FAST, EFFECTIVE PROGRAM ANALYSIS
FOR OBJECT-LEVEL PARALLELISM

by

William Christian Benton

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

2008

© Copyright by William Christian Benton 2008
All Rights Reserved

ii

For w.EB., W.J.B., W.D.B., and W.T.B.

Was du ererbt von deinen Vitern hast,
Erwirb es, um es zu besitzen.
— JOHANN WOLFGANG VON GOETHE

ACKNOWLEDGMENTS

It is customary for authors of academic books to include in their
prefaces statements such as this: “I am indebted to ... for their in-
valuable help; however, any errors which remain are my sole re-
sponsibility” Occasionally an author will go further. Rather than
say that if there are any mistakes then he is responsible for them,
he will say that there will inevitably be some mistakes and he is
responsible for them....

Although the shouldering of all responsibility is usually a social
ritual, the admission that errors exist is not — it is often a sin-
cere avowal of belief. But this appears to present a living and ev-
eryday example of a situation which philosophers have commonly
dismissed as absurd; that it is sometimes rational to hold logically
incompatible beliefs.

— DAviID C. MAKINSON (1965)

This dissertation and the work it documents owe a great deal to the assis-
tance, support, and advice of many people.

I could not have asked for a better advisor, and I am deeply indebted to
Charles Fischer for his role in my graduate career. Charles is an excellent
teacher and mentor and a tremendous resource. I have benefited greatly from
his advice, encouragement, support, and multidisciplinary knowledge over
these last five years. Thank you, Charles.

[am grateful to my thesis committee for their willingness to serve (and their
willingness to get up early on a very cold Monday morning for my defense). I
am indebted to each of them in particular for the ways that they have helped
me to improve my dissertation work: to Susan Horwitz, for her precision,
attention to detail, and consistently excellent and prompt feedback; to Ben
Liblit, for his regular and helpful advice at both the micro- and macro-levels
of research, development, and writing; to Marvin Solomon, for his careful
and precise feedback and for his depth and breadth of knowledge; and to Paul
Wilson, for his enthusiasm and perspective.

I have always benefited from excellent teaching. I would like to recognize,
in chronological order, Stephen Sesko at Lawrence Livermore National Lab,
who introduced me to recursion when I was eight as part of a summer Logo
course; Steve McKelvey and Dick Brown, of the Mathematics department of

iii

iv

St. Olaf College, with whom I have enjoyed an extended conversation about
computing and pedagogy; and John Poling and Rick Fairbanks, both formerly
of the Philosophy department at St. Olaf, who taught me a great deal about
thinking critically and writing well.

I have been fortunate to be a part of a collegial and vibrant programming
languages research community here at Wisconsin. I am thankful to the mem-
bers of the pl-chat mailing list in particular for good discussions, references,
and camaraderie. I have also benefited from our department’s strong computer
architecture and systems groups, and would like to thank in particular the
following present and former members of the department for their friendship
and advice: Ras Bodik, Eli Collins, Jesse Davis, Tim Denehy, Allison Holloway,
Steve Jackson, Mike Marty, and Philip Wells.

I am thankful to Bart Miller for his support early in my graduate career and
for advice, mentoring, and exposure to many great ideas that I would not have
otherwise encountered. Bart taught me a great deal about how (and how not)
to do research and how to present ideas clearly. While working on the Paradyn
project as a junior grad student, I was able to learn from senior students, and
would specifically like to recognize the guidance and friendship of Phil Roth
and Vic Zandy.

Dorian Arnold is one of my oldest friends at Wisconsin. I am grateful for his
friendship first of all, for the absurd workout and lunch schedules we were able
to maintain for many years, and for far too many conversations and well-fought
arguments to count. I am also thankful for Dorian’s feedback on my work, for
the discussions we’ve been able to have about our research, and for his regular,
jocular reminders that my margins and leading are as comically large as my
taste in Carribean music is out-of-date.

I am thankful to Matt Allen for his friendship, regular and sound advice
about matters ranging from fantasy football to computer architecture, and
for our discussions about our research programs and about broader issues of
concurrency and systems over the last few years. In particular, many nomen-
clatural improvements in my discussion of object-level parallelism are due to
conversations with Matt.

I am glad to count Nick Kidd as a close friend and am indebted to him for
his consistently excellent and subtle feedback on my work (in particular, on my
vMCAI ‘09 and PPDP '07 papers); for thought-provoking discussions; and for
his willingness to share advice on static analysis and model checking.

I am thankful to Anne Mulhern for her friendship, for many productive
conversations about types and logic, for her feedback on my pPDP "07 paper,

and for her excellent seminar on theorem-proving in Coq.

Having good research infrastructure has been an unexpected joy. I am
thankful to all of the people and groups whose fine work I have been able to
employ and extend. Vitor Santos Costa of the Universidade do Porto deserves
thanks for the amazing Yap Prolog environment, his very quick responses to
bug reports, and his guidance on modifying Yap to run under 64-bit OS X. I am
also indebted to Vitor for his enthusiastic, expert advice on logic programming
in general and the details of tabling in particular. The Soot group at McGill
University, and especially Soot maintainer Eric Bodden, have my thanks for
an excellent research compiler infrastructure; for helpful advice on the proper
use and care of Soot; and for extremely quick response to issues and review of
patches. The Jikes RVM community is very strong and has generously provided
helpful, patient advice over a period of many years. In particular, I am grateful
to Ian Rogers, Steve Blackburn, and Eliot Moss for their prompt and friendly
responses to my questions.

[am grateful to Rebecca Hasti and Perry Kivolowitz, who supervised me in
my various teaching appointments throughout my graduate career, taught me
a great deal about teaching, and advocated for me as a teaching assistant.

I would like to thank the following people who, while they did not directly
contribute to my dissertation work, have certainly made my time in Madison
more pleasant: Dan Gibbons, Tim Glenn, Greg Jones, Taryn Okuma, Kim
Huth, and Mark Hanson; Drs. David Jarrard, David King, and Glenn Liu; and
my friends in the Madison Opera chorus.

I literally could not have completed this endeavor without my parents,
W. David and Karen Benton, and anything I could say about them here will be
inadequate. I am grateful for their encouragement and guidance throughout
my childhood, for the way they have always challenged me to do my best, and
for their moral, spiritual, and financial support during my graduate career. I
am also thankful to my father for showing me at a very early age how exciting
it could be to think about computation and to both my parents for continuing
to offer advice until I was old and wise enough to accept it.

Finally, I am blessed with an amazing wife and son. Andrea is my best
friend, a brilliant coach, and an excellent editor. Her encouragement, support,
and love have sustained me throughout all of the challenges and triumphs of
the past decade. Thank you, sweetheart, for everything.

This dissertation is dedicated to my son, William Thomas Benton, and to some
other William Bentons: my father, my grandfather, and my great-grandfather.

vi

Thomas, I hope you will possess the gifts your fathers have given you and make
them your own.

S.D.G.

William C. Benton
December 2008

TABLE OF CONTENTS

Table of Contents vii

List of Tables ix

List of Figures xi

Abstract xiii

1

Introduction 1

1.1 Background 1

1.2 Our contributions 5
1.3 Synopsis 7

Exposing latent object-level parallelism 9
2.1 Preliminaries 11

2.2 Purity and safety 17

2.3 The piMA model 19

2.4 Related work 22

Declaring bytecode processors and analyses 29
3.1 Overview of the system 32

3.2 Using piIMPLE"T 33

3.3 TheDIMPLEY IR 37

3.4 The pIMPLE" Analysis Language 55

3.5 Query engines 58

3.6 Case study: Andersen’s analysis 63

3.7 Case study: effects inference 68

3.8 Related work 74

Effect inference for safe parallel execution 81

4.1 Mostly-functional behavior in Java programs 82
4.2 Objects and effects: Background and motivation 83
4.3 A lightweight object-oriented effects system 84

4.4 Initializers and initialization effects 90

4.5 Quiescing field inference 94

vii

viii

4.6 Degrees of purity 97
4.7 Related work 98

5 Runtime evaluation and support 105
5.1 Experimental environment & evaluation methodology 106
5.2 Method invocations as potential tasks 111
5.3 Runtime support 116
5.4 Related work 118

6 Conclusions and future work 121

A Conventions 125
A.1 Naming conventions 125
A.2 Typographical conventions 126

B Relations in the DIMPLE IR 129
Colophon 135

References 137

LIST OF TABLES

1.1

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8

39

3.10
3.11

5.1

Al

Relative prevalence of implementation languages for software projects

DIMPLE ' structures representing Java values and constants 39
DIMPLE" structures representing Java arithmetic and value expres-
sions 39

DIMPLE " structures representing Java comparison, bitwise, and
logical expressions 40

DIMPLE" structures representing Java object and array expres-
sions 41

DIMPLE" structures representing heap locations 41

DIMPLE" structures representing Java bytecode statements 43
Statements modeled by legal DIMPLE™ assignment structures 44
DIMPLE" structures representing program structure and meta-
data 45

DIMPLE" structures representing method structure and control
flow 46

DIMPLE" structures representing analysis-domain entities 46
Performance results for Andersen’s analysis with the tabled query
engine 68

IR for a simple effects system 86

Counts of methods that represent more than 0.01% of total method
invocations. 112

Conventions for metavariable domains 125

ix

4

LIST OF FIGURES

2.2

2.3
2.4

2.5
2.6

2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

3.10

3.11
3.12
3.13
3.14

3.15

Sequential execution vs. execution exhibiting object-level paral-
lelism 10

Example of minimal field access paths. The method foo2 is equiv-
alent to the method foo, but it does not feature access paths of a
length greater than 1. 14

Example of inherited classes that share field names 15

Memory diagrams illustrating state changes effected by field oper-
ations. 15

Typical method layout, with virtual function table pointer. 20
Proxy for a mutator method, with vtable pointer and updated dele-
gate invocation queue. 22

Proxy for an accessor method, with vtable pointer, synchronization
point, cleanup code, and original method body. 22

High-level overview of the DIMPLE™ system’s architecture. 34
Java listing for a simple cons-cell class 48

Metadata for the Cell class 49

Field and method declarations for the Cell class 50

Java bytecodes for cons (int, Cell) and length() methods 51
Truth table for the ternary majority function 61

Decision tree for the ternary majority function 61

Reduced ordered binary decision diagram for the ternary majority
function 62

Andersen’s analysis: select statement processing rules (rules treat-
ing arrays and exceptions are omitted) 65

Andersen’s analysis: statement processing rules used by interpro-
cedural transfer functions 66

Andersen’s analysis: complete analysis rules 67

A simple Point class 69

foo exposes a shortcoming of the simple analysis 71

Select statement processing rules for parameterized effects infer-
ence (WRITE effect rules are omitted) 73

Select analysis rules for parameterized effects inference (rules treat-
ing WRITE effects are omitted) 74

xi

xii

4.2
4.3

4.4

4.5

5.1
5.2

5.3
5.4
5.5
5.6
5.7
5.8
5.9

Rules for reconstructing effects annotations in the straightforward
effects system 89

Inference rules for initialization methods and initializer effects 93
Static and dynamic prevalence of final and quiescing fields in select
DaCapo benchmarks 96

Percentage of all instance methods that are externally-pure or
externally-read-only; INIT effects and effects on quiescing fields
have been masked. 98

Example of a pure method that is not identified as such by our
simple system 102

Per-thread state maintained by instrumentation code 109
Example instrumentation code as inserted for three kinds of basic
blocks 110

Method invocation durations for antlr 113

Method invocation durations for bloat 113

Method invocation durations for eclipse 114

Method invocation durations for jython 114

Method invocation durations for luindex 115

Method invocation durations for pmd 115

A more efficient proxy implementation. 117

A.1 An example Java program listing 126
A.2 An example Prolog program listing 126

FAST, EFFECTIVE PROGRAM ANALYSIS
FOR OBJECT-LEVEL PARALLELISM

William Christian Benton

Under the supervision of Professor Charles N. Fischer
At the University of Wisconsin-Madison

Multicore and multithreaded processors are ubiquitous. Applications in several
domains, such as internet servers, scientific simulations, and high-end me-
dia creation tools, are generally capable of exploiting the concurrent contexts
presented by these processors. However, the vast majority of client applica-
tions present sequential workloads that will not directly benefit from parallel
hardware. In order for such applications to achieve high performance on such
processors, they must be reimplemented as parallel applications.

Unfortunately, writing parallel software in mainstream programming lan-
guages is notoriously difficult. The thesis of this dissertation is that real-world
client applications exhibit implicit thread-level parallelism because methods on
distinct objects are often independent. We show that it is possible to identify
this object-level parallelism statically via efficient, novel type-based program
analyses to identify methods that are good candidates for safe parallel execution.
In addition, we demonstrate that many methods that can be safely executed
through object-level parallelism are substantial enough to constitute realistic
parallel tasks.

Charles N. Fischer

ABSTRACT

Multicore and multithreaded processors are ubiquitous. Applications in several
domains, such as internet servers, scientific simulations, and high-end me-
dia creation tools, are generally capable of exploiting the concurrent contexts
presented by these processors. However, the vast majority of client applica-
tions present sequential workloads that will not directly benefit from parallel
hardware. In order for such applications to achieve high performance on such
processors, they must be reimplemented as parallel applications.

Unfortunately, writing parallel software in mainstream programming lan-
guages is notoriously difficult. The thesis of this dissertation is that real-world
client applications exhibit implicit thread-level parallelism because methods on
distinct objects are often independent. We show that it is possible to identify
this object-level parallelism statically via efficient, novel type-based program
analyses to identify methods that are good candidates for safe parallel execution.
In addition, we demonstrate that many methods that can be safely executed
through object-level parallelism are substantial enough to constitute realistic
parallel tasks.

xiii

1 INTRODUCTION

The challenge of programming multi-core processors is real, but it is
not a technical challenge. It is a purely sociological challenge. Tech-
nically, we have known since the 1980s how to program multi-core
processors (in the guise of shared memory multiprocessors) and how
to write programs for them (in terms of parallel algorithms).

— PETER VAN RoY (2008)

Despite Van Roy’s playful suggestion above, writing parallel software in
mainstream programming languages is notoriously difficult. The thesis of
this dissertation is that real-world client applications exhibit implicit thread-
level parallelism because methods on distinct objects are often independent;
furthermore, it is possible to identify this object-level parallelism statically via
type-based program analysis and exploit it with lightweight runtime support.

1.1 BACKGROUND

For many years, the most dramatic improvements in software performance
correlated closely with improvements in superscalar processor design and
implementation. Improvements in manufacturing processes within particu-
lar microarchitecture generations led to smaller chips that could run at faster
clock frequencies. Independently, each subsequent generation of chips devoted
additional transistors to implementing ever more aggressive mechanisms for
exploiting implicit instruction-level parallelism, some of which are described in
a survey paper by Smith and Sohi (1995): branch predictors to enable specula-
tively fetching a longer stream of instructions; logic to enable the simultaneous
issue of multiple independent instructions; register renaming units to elimi-
nate false dependences between instructions; and other, more sophisticated
speculation techniques.

Olukotun et al. (1996) argued — and time seems to have borne out — that
continual performance improvements from exponential clock rate improve-
ments and increasingly aggressive speculative hardware are unsustainable; this
is the case, in large part, due to the power requirements of such improvements.
Rather, they claimed, it makes more sense to use additional transistors and chip
real estate to provide multiple, simpler chips in a single package. Single-chip
parallel processors (Nayfeh et al. 1996; Tullsen et al. 1995) enable the simulta-

neous issue of instructions from multiple tasks on a single chip. Multithreaded
designs extend the superscalar concept by allowing multiple threads to com-
pete for hardware resources, simultaneously issuing instructions to different
functional units. Multicore designs have multiple distinct execution units on a
single die, which communicate by means of a shared cache. Still other designs
combine aspects of multicore and multithreaded processors.

In the last decade, single-chip parallel processors have gone from being a
hotly-discussed research topic to a ubiquitous component of computer systems,
with multicore and multithreaded processors currently enjoying widespread
use in workstation, server, and portable computers. These processors even
appear in price-critical applications like game consoles: as an example, con-
sider Microsoft’s Xbox 360 platform (Andrews and Baker 2006), which was
introduced in 2005 and whose cpu features 3 in-order cores running at 3.2GHZ
with two hardware threads per core.

Because of the shift from aggressive superscalar processor designs to de-
signs with more plentiful and less aggressive cores, applications can no longer
rely on ever-faster uniprocessor performance. Instead of focusing chip re-
sources on the highest-possible single-threaded performance, architects are
building processors that can provide greater performance for concurrent work-
loads. As a consequence, future application speedups — indeed, even effective
processor utilization — will come from software that can take advantage of
concurrency.

Implicit concurrency is abundant in some kinds of programs, including
those corresponding to server, scientific, and streaming-media workloads.
Furthermore, there are known means to manually or automatically exploit
such concurrency in many of these problem domains. (In addition, many
of these problems inspire the sort economic incentive necessary to devote
additional engineering effort to ensuring high utilization.) Server workloads
are often explicitly multithreaded or multiprogrammed, and those that are
not generally enjoy a straightforward path to explicit multithreading (e.g. by
handling client requests with one of a pool of independent server threads).
Automatically extracting threads from loop bodies in scientific, numerical,
and streaming programs is a well understood problem, and there is ample
library and language support to facilitate purpose-built parallel software in
these domains.

Unfortunately, the vast majority of end-user applications present serial inte-
ger workloads, with pointer-based data structures and irregular data accesses.
Such programs cannot natively exploit hardware parallelism (unless, of course,

two or more run at once via multiprogramming), and classical techniques
to extract loop-body or array parallelism are not applicable for them. Many
of these programs could be rewritten to exploit multicore or multithreaded
processors, but only after heroic development (and maintenance) effort and
potentially great cost.

Of course, not all programs or problems are able to take advantage of
hardware concurrency. As a real-world example, even though it takes two
hours for a pound of bread dough to rise in a bowl, one cannot raise the same
amount in twelve minutes by dividing it among ten bowls. However, many
applications that are written out as serial programs implicitly encode several
independent, concurrent tasks.

The following short excerpt from J.S. Bach’s d minor Chaconne for solo
violin (from BwWV 1004) serves as an analogy for a serial program with implicit
concurrent tasks:

£ oy ® o4
il o

¥

oS
BEEL]

T Y
I I oy
I I kil r) o | |
I I Il e

e Lig h'; br _E

Although the writing in the above excerpt is monophonic (that is, only one
note sounds at a time), Kennan (1987) showed that it implies polyphony (that
is, multiple independent voices sounding concurrently). In listening to this
example, one can clearly hear at least two parts in the single melodic line. We
might write these out separately, with individual parts denoted by the direction
of their note-stems, as follows:

e

T
I
I Al
I

G

|

In at least one way, sequential programs are no different from monophonic
music. That is, a program written in the sequential style may nevertheless imply
several independent tasks that can complete concurrently. The challenge is that
programmers must expose these tasks (1) without changing the meaning of the
program, (2) without introducing undue engineering or maintenance effort,
and (3) without encoding dependences on the accidental features of particular
microarchitecture implementations. Of course, there are performance costs
associated with task creation and intertask coordination, so programmers have
the added challenge of producing a parallel decomposition that performs at

Projects

Language Count Share

C 9181 23.56%
Java 6183 15.87%
C++ 5139 13.19%
PHP 4490 11.52%
Perl 3788 9.72%
Python 3207 8.23%
JavaScript 1194 3.06%
Shell script 1096 2.81%
SQL 564, 1.45%
Tcl 512 1.31%
Ruby 504 1.29%
Objective-C 388 1.00%
All other languages 2725 6.99%
All dataflow languages 1061 2.72%

Table 1.1: Relative prevalence of implementation languages for software
projects listed on freshmeat.net; all languages with at least 1% of the total share
of projects are listed.

least as well as the serial version.

In the position paper quoted at the beginning of this chapter, Van Roy
(2008) playfully claims that the problems of multicore programming are solved
and that the challenge posed by multicore processors is a merely sociological
one: namely, that most programmers are unwilling or unable to program in
dataflow languages in which the technical problems of exposing and exploiting
implicit parallelism are well-understood.

It is difficult to dispute Van Roy’s implication that few dataflow languages
are truly ubiquitous; Table 1.1 shows the relative prevalence of the twelve
most popular implementation languages on the popular software-tracking
web site freshmeat.net as of September 2008, as well as the count and share of
programs implemented in dataflow languages.' Only the top twelve languages

"We defined “dataflow” languages generously, including languages with only single-
assignment variables (Erlang, Haskell, and Prolog), declarative query languages (sQL), and

have at least a 1% share of projects; these languages together account for 93% of
projects. These numbers are not intended to represent the state of all software
development — they do not account for internal development, in which releases
are not announced in public, and likely undercount the prevalence of some
languages as a result — but they represent a reasonable approximation of the
implementation-language ecosystem for end-user applications.

Imagining the utopia in which dataflow languages enjoy well-deserved
ubiquity makes for a pleasant daydream, but procedural and object-oriented
languages with mutable state are far more widespread. In Table 1.1, all of the
top seven languages feature mutable state, and the only one of the top twelve
languages that we considered to be a “dataflow” language — sQL — is neither
general-purpose nor Turing-complete. (sQL also accounts for over half of all
projects implemented at least in part in “dataflow” languages.) Most of the
imperative languages in the top twelve are object-oriented or support object-
oriented features, and many run in managed environments or require nontrivial
runtime support. Even if a language that makes it easy to exploit implicit
parallelism were to immediately achieve widespread popularity tomorrow, we
would still have tens of thousands of legacy applications written in languages
like these in the top twelve, that are less amenable to known techniques.

1.2 OUR CONTRIBUTIONS

The focus of this dissertation is on technical advances to sidestep the soci-
ological challenges. We have designed a parallel evaluation model, analyses
and effect systems, and runtime support to help bridge the gap between the
language climate we have now — dominated by managed object-oriented
languages with mutable state and relatively unrestricted aliasing — and the
language climate we hope to have in the future, which we expect will make
designing and programming for pervasive concurrency far more tractable. The
goal of this work is to present novel techniques, inspired by those for find-
ing implicit parallelism in dataflow and mostly-functional languages, that can
effectively identify a particular kind of implicit parallelism in a mainstream
object-oriented language. We develop and evaluate our techniques in the con-
text of the Java language and virtual machine, since Java is ubiquitous and we
believe it to be representative of a useful class of languages.

mostly-functional languages with some impure features (Lisp, OCaml, Scheme, and Standard
ML).

We assume Van Roy is being at least somewhat tongue-in-cheek when he
proposes that the challenge of programming for multicore processors is merely
that of bringing the delights of dataflow languages to a benighted and weary
cohort of programmers. Industry inertia alone would seem to preclude this as
a viable solution; furthermore, some problems do not admit straightforward
solutions in dataflow languages. If we are (at least for the foreseeable future)
stuck with programs written in imperative languages and programs that are
difficult to reason about and automatically decompose, then it is desirable to
bring some of the benefits of dataflow and mostly-functional languages to the
languages that most working programmers use and to an enormous body of
extant programs.

Given arbitrary side effects and unrestricted aliasing, general-purpose au-
tomatic parallelization is intractable. However, we exploit the engineering
properties of object-oriented software — namely, that effects are typically con-
fined to the receiver object — to treat some objects as independent processes,
which synchronize with one another at certain method call boundaries. In
this respect, our overall approach is similar to Multilisp (Halstead 1985), in
which expressions can become processes, or to dataflow parallelism, in which
an arbitrary number of evaluations can proceed independently once their
dependences are satisfied and until their results are required.

The most salient difference between our contributions and the solved “tech-
nical challenge[s]” that Van Roy identifies in the context of dataflow and func-
tional languages is that we are not operating within pure or mostly-pure lan-
guages with single-assignment variables. Rather, we are dealing with languages
and runtimes in which side-effects are not only allowed but expected and id-
iomatic. As a consequence, we have developed analyses and an effect system to
identify interference and independence between objects. Our analyses present
concise summaries of the effecting behavior of methods and identify methods
whose effects are confined to their receiver object; the runtime support we
propose for our model is able to make use of dynamic aliasing information to
precisify these summaries and enforce data dependence constraints.

We expect that, in the future, languages and programming models will
provide better support for explicit parallel programming, and for parallel pro-
gramming in-the-large. It would be foolish to speculate as to precisely what
form these models and languages will take, but models that eliminate or mini-
mize mutable shared memory between processes (including message passing
between imperative processes and dataflow programming) have a great deal to
recommend them over traditional shared-memory multithreaded program-

ming. Since the techniques that we propose in this dissertation are applicable
to extracting implicit parallelism from idiomatic imperative object-oriented
programs, we expect that they would still be applicable to extracting implicit,
fine-grained parallel tasks from explicitly-specified, isolated tasks consisting of
idiomatic object-oriented parallel programs. In this way, we hope that our con-
tributions can bridge the gap between the dataflow-parallelization techniques
of the past and the burdens of finding ever more tasks in an explicitly parallel
future.

1.3 SYNOPSIS

In the remainder of this document, we:

. Introduce object-level parallelism (OLP), a measure of potential implicit paral-
lelism analogous to instruction-level parallelism, and piMA, a programming
model designed to exploit oLp (in Chapter 2);

. Present the piMPLE™ declarative analysis framework for flexible, interactive,
and scalable analysis of Java bytecode programs (in Chapter 3), and which we
use for implementing the analyses we present in Chapter 4;

. Define and evaluate a novel object-oriented type-and-effect system, inference
rules, and client analyses to identify a large class of run-time constant fields
and object instance methods that are good candidates for parallel execution
because their side effects are confined to individual objects (in Chapter 4); and

. Evaluate dynamic opportunities to exploit latent oLP in Java programs and
identify the runtime support necessary to do so (in Chapter 5).

We shall then conclude by presenting opportunities for further investigation,
identifying the insights that we have acquired from imposing a new parallelism
model onto already-written programs, and considering what these might mean
for future programming models for purposefully-designed parallel programs.

The goal of bridging the gap between theories developed in the context of
dataflow languages and practice in the world of imperative, object-oriented
languages guides each of our contributions. The contributions in Chapters 2
and 4 bring parallelism techniques inspired by those for declarative languages
to object-oriented languages by presenting a measure of implicit parallelism
demarcated by module boundaries, a model for object-oriented parallel pro-
gramming, and an analysis to determine when the effects of methods can be

guaranteed independent in object-oriented programs. Chapters 4 and 5 char-
acterize dynamic executions of object-oriented programs, showing substantial
“mostly-functional” behavior, for which declarative parallelism is appropriate.
Finally, the work described in Chapter 3 brings the benefits of declarative pro-
gramming to an object-oriented language more indirectly, by presenting a logic
programming environment for rapid, interactive development of new program
analyses.

2 EXPOSING LATENT OBJECT-LEVEL PARALLELISM

A programming language is low level when its programs require
attention to the irrelevant.

— ALAN J. PERLIS (1982)

Extensions for parallel execution have been a part of object-oriented lan-
guages for nearly as long as there have been object-oriented languages." To date,
most proposals for combining concurrency and objects have either required
substantial program restructuring, have allowed the introduction of race con-
ditions, or both. In this chapter, we present piMA, a parallelism model designed
to enable programmers and program transformations expose and exploit latent
object-level parallelism (OLP) in idiomatic object-oriented programs. Much
like instruction-level parallelism (1LP), which can be exposed by superscalar
hardware that issues independent instructions simultaneously, oLP can be
exposed by a virtual machine that activates independent methods on distinct
objects concurrently. PIMA is a parallelism model that is designed to exploit
oLp, motivated by the modular nature of object-oriented programs, capable
of ensuring race-free executions, and likely to result in parallel executions
without contention between threads. Furthermore, PimA is more flexible than
most extant models and is thus suitable for automatic transformation of serial
programs to parallel ones.

Intuitively, the idea behind object-level parallelism is that the instance
methods of certain objects may execute asynchronously without changing the
result of a program, so that the work of a single explicit (that is, programmer-
specified) thread may be split among a main thread and a pool of delegate
threads. The piMA model is a tool for exposing and exploiting latent oLp,
just as microarchitectural techniques like speculation are tools for exploiting
latent instruction-level parallelism. In contrast to hardware techniques for
ILP, which operate dynamically, PIMA features cooperating static and dynamic
components. Under PIMA, an object may be demarcated by a static annotation
on a variable that refers to that object. (This annotation may come from an
application programmer or an automatic program transformation.)

Method invocations on demarcated objects may be assigned to particu-
lar delegate threads by support code executed in the main thread, so that a

*Simula 67 provided a mechanism to associate an object with its own thread of control
and execute method invocations asynchronously (Dahl et al. 1970).

10

delegate a.put(k1,v1) O
a.put(k1,vi1); 1
1o delegate b.put(k3,v3) N
a.put(k1,v1);
delegate a.put(k2,v2) ©
b.put(k3,v3); |4
b.put(k3,v3); P () 1o delegate b.put(k4,v4) 1
b
j a.put(k2,v2);
a.put(k2,v2); b.put(k4,v4);
synchronize with delegate thread for a
x = a.get(k1);
b.put(k4,v4);

synchronize with delegate thread for b

)=t
y = b.get(k4);

main thread delegate thread for b main thread delegate thread for a

sequential execution execution with object-level parallelism

Figure 2.1: Sequential execution vs. execution exhibiting object-level paral-
lelism

delegated method invocation M may execute concurrently with the program
execution that immediately succeed M. (We shall refer to the remainder of
dynamic execution after some method invocation M as the continuation of M.)
The main thread will synchronize with the appropriate delegate threads when
the result of a delegated method is required by dynamic program execution.

As an example, Figure 2.1 shows a pair of representations of dynamic
program executions that manipulate and access dictionary objects. On the
left, methods on the objects referred to by a and b are executed serially, in the
main thread. On the right, the execution exploits the object-level parallelism
latent in the serial execution. With object-level parallelism a and b each have
their own delegate threads; instead of invoking methods on a and b, the main
thread sends messages to the delegate threads for a and b.

In the remainder of this chapter, we will define our terms more precisely
(Section 2.1), discuss necessary safety properties (Section 2.2), and describe
the operation of a program running with oLP (Section 2.3). We then close by
placing PiMA and oLP in the context of related work (Section 2.4). We will

11

discuss static analyses to help ensure safety properties and runtime support
for exposing oLP in Chapters 4 and 5, respectively.

2.1 PRELIMINARIES

Before we discuss object-level parallelism and pima, we will cover the terms we
will use in discussing object-oriented language features, some of the relevant
particulars of the Java language, and some of terms and concepts involved in
identifying safe parallel executions.

Basic definitions

Object-oriented languages like Java typically provide at least three kinds of
methods. Instance methods operate on a particular object and can access its
private state. Instance methods must be invoked via a reference to a receiver
object (that is, the object the method will be operating on); the receiver object
is accessible within the method body via a special implicit reference parameter
(typically called this or self). For example, using Java syntax, the statement x.f()
invokes the f() instance method; the object referred to by x is the receiver. In
contrast, class methods (also known as static methods) do not operate on a
particular receiver object and are shared among all instances of a particular
class. Constructors serve to set up an object’s state; a given object lifetime
will have exactly one associated constructor invocation prior to any instance
method invocations. (Java, like other safe object-oriented languages, enforces
this constraint.)

Two types of instance methods are worthy of particular attention. Infor-
mally, accessor methods inspect the private state of an object without changing
it. Mutator methods modify the private state of an object (whether or not they
inspect it). We shall refine these definitions shortly, after discussing the sorts
of computational effects Java methods may exhibit.

Effects in Java

We treat effects in much greater detail in Chapter 4; here our goal is to present
enough background and terminology in order to clarify our concepts of purity
and safety. We begin by stating our intuition about effects: a side effect consists
of a read or write to mutable state. As in Lucassen and Gifford’s pioneering
work on effect systems (1988), our broad goal in employing effects is to iden-

12

tify noninterfering computations that may execute concurrently.”> To do so,
we ascribe effect signatures to statements and method bodies. Just as a type
signature is a representation of the range of possible values that a variable
might assume or of the values that a function might operate upon and return,
an effect signature is an approximation of the range of possible effects that a
statement or method body may exhibit.

As we shall see, our intuition — merely defining side effects as reads or
writes to mutable state — is too restrictive. Some effects, like incrementing a
for loop induction variable, are not typically observable outside of the method
in which they occur and thus cannot introduce data dependences between
method invocations. As a step towards ignoring unobservable effects, we first
identify two kinds of state:

Definition 2.1 Ephemeral state exists for a fixed, lexically-scoped lifetime and
may be inaccessible for some subset of its lifetime.

Definition 2.2 Durable state may persist beyond the scope in which it was
created; for example, dynamically-allocated heap objects are durable.

Stack-allocated storage, for example, has a lifetime corresponding to a
method activation and is only available when the activation record in which it
lives is at the top of the stack. At a lower level, compiler-generated temporaries
or data on the Java value stack are also ephemeral. By contrast, durable state
must be sharable: if a datum may persist beyond the scope in which it was
created, then it must be possible to have multiple references in separate method
activations that refer to it and alias one another.

For the purposes of ascribing effect signatures to a method, we can ignore
effects that are only visible within that method. Since the lifetime of ephemeral
state is necessarily bounded by the dynamic lifetime of a method or code block,
we need not track effects on some ephemeral location E if we can guarantee
that E cannot be modified implicitly. That is, if E is modified via assignments to
a particular local variable — and only via assignments to that variable — then it
suffices to track data dependences on E through standard dataflow analysis. As
we shall see, in Java, modifications of local variables can only affect ephemeral
state, and modifications of durable state can be syntactically differentiated
from modifications of ephemeral state.

2In contrast to the system presented by Lucassen and Gifford, we do not consider allocation
of heap objects as an effect.

13

In Java, all structures and arrays exist only in the heap as durable state
and are accessed via opaque references. Local variables may be scalar-valued
or may hold a reference to durable state, are stored on the stack, copied in
assignment, and passed by value to other methods. It is impossible to create a
reference to a stack value; changing the value of one local will not affect the
value of a local with a different name. By contrast, it is possible to have several
reference variables that alias the same heap object. Changing the value of one
of these variables will change its referent and will not change the referents
of any aliasing variables, but changing the contents of an object through a
reference will, of course, affect any code that accesses the same object through
an aliased reference.

Local variables are mutable, but any data dependence introduced by modify-
ing local variables is explicitly transmitted by copying values to other variables
or passing values as parameters to other methods, and can thus be tracked with
program dataflow. On the other hand, computational effects that modify the
state of heap objects are of special concern since these represent data depen-
dences that are communicated implicitly via aliasing. Put another way, a data
dependence between expressions involving the values of local variables will
be obvious (since the location that stores the value of a local variable may be
referred to by exactly one name), but a data dependence between expressions
that read and write heap data may be harder to find, since several names may
be aliases for the location of a value in the heap.

The first important detail about our treatment of effects is that we ignore
effects on ephemeral state when constructing effects signatures for methods or
statements. Since ephemeral data in Java must be copied or passed explicitly to
other locations, effects on one ephemeral datum will be independent of effects
on any other. Furthermore, since ephemeral data do not persist beyond the
lifetime of a given method invocation, it is impossible for the ephemeral effects
of two distinct method invocations to interfere.

We cannot ignore effects on durable state, and so we need some way to
characterize effects on heap objects. In the discussion that follows, we shall
assume that Java programs have been translated into a form so that any field
access is through a minimal path, or one with exactly one field name in it; it is
trivial to do this translation by introducing temporaries, as in Figure 2.2.> We
further assume that each assignment statement either has a field reference on

3Note that this translation is done automatically by Java compilers as part of the translation
to bytecode, and the analyses presented in Chapter 4 operate on bytecode. We mention it
here to facilitate our presentation of the concepts of effects in the context of Java source code,

14

public class Tree {
private Tree left, right;
private Object data;

// other methods

public Tree foo() {
return this.left.left.right;
b

public Tree foo2() {
Tree t1 this.left;
Tree t2 tl.left;
Tree t3 = t2.right;
return t3;

Figure 2.2: Example of minimal field access paths. The method fooz2 is equivalent
to the method foo, but it does not feature access paths of a length greater than
1.

the left hand side or the right hand side, but not both. (That is, every statement
is either aload or a store, but no statement is a load and a store.) Finally, we treat
array accesses in a similar fashion: we require that each statement has at most
one array access, and we assume that accesses to multidimensional arrays have
been translated, via temporaries, to a sequence of accesses to one-dimensional
arrays.

Like most object-oriented languages, Java supports inheritance; a derived
class may extend a base class by adding fields and adding or overriding methods.
Multiple classes may declare fields with the same name, even if one of these
classes extends the other. Figure 2.3 shows two example classes in such a
relationship. A is extended by B; both declare fields named f. The Java language
specifies that the particular field accessed by a field access expression depends
on the type of the reference to the containing object. The bar method in B
demonstrates this by writing, through aliasing references of different types, to

which is more familiar to most readers than Java bytecode.

15

public class A {
Object £;
public void foo(Object o) {
this.f = o; // assigns to A.f

}
}
public class B extends A {
Object f£;
public void bar(Object o) {
A a = (A)this;
a.f = this.f; // writes to A.f, reads from B.f
this.f = o; // writes to B.f
}
}
Figure 2.3: Example of inherited classes that share field names
OO 6, G, 6
A B A B A B
Af |m Af [m]| 0 [Af [m Af [m] @ [Af |m Af |m
Bf |m| : / Bf |m[): / Bf |m
[] o])
A a = new AQ); . :
o b rew B0 s bt s [o]
a.foo("al");
b.f = "bl"; ' b.foo("ab!"); ' b.bar("ba!");

Figure 2.4: Memory diagrams illustrating state changes effected by field opera-
tions.

16

both the f field declared in A and to the f field declared in B.* Figure 2.4 presents
memory diagrams of example instances of A and B after various operations
take place.

A field reference as it appears in Java source code — for example, x.f — is
ambiguous out of context. We need to know the type of x in order to determine
which memory locations might be affected. (As Figure 2.4 shows, an instance
of B has distinct fields A.f and B.f.) When we discuss the effects of instance
methods, we will avoid this ambiguity by describing fields with an abstract field
reference containing both a field’s name and the name of its declaring class.

Definition 2.3 An abstract field reference is a 3-tuple (p, k,v) where p is a
region containing the object that owns the field, either a set of abstract region
names or p,, the universal region; k is the name of the class declaring the field
being accessed; and v is the name of the field as declared in k.

Given our simplified form for Java statements, each statement that does not
invoke a method may have exactly one effect: it may exhibit a READ or WRITE
effect by loading from or storing to an abstract field reference, respectively. (We
treat array loads and stores with a special abstract field reference containing
the class of the array and a distinguished field name corresponding to “any
array element”) A statement containing a method invocation I includes all
the effects of every statement of every method body that could be selected
by I. Calculating the effects of a method body is straightforward: if the effect
of some statement S is given by fx(S) and the set of statements in a method
M are given by stmts(M), then the effects of a method M are defined as:
fx(M) ={fx(S;) : S; € stmts(M)}

An abstract region describes some part of durable state in which an effect
may occur. We say that an effect or abstract field reference implicates the set
of abstract regions in which it may occur. We defer our primary discussion of
the representation of abstract regions until Chapter 4. However, we shall note
two details about regions at this time:

First, with the exception of the universal region p,, (which aliases all other
regions), regions may not alias one another. As a consequence, any ascription
of regions must ensure that two statements whose effects implicate disjoint sets
of regions must not interfere. Put another way, if the sets of regions implicated

“Note that this is unidiomatic Java; typically, an instance field is declared as private, in-
dicating that it may only be accessed or manipulated from within methods in its declaring
class.

17

by two effects do not intersect, then two statements exhibiting those effects
will not access the same concrete memory location. (We term an ascription of
regions that satisfies this property sound.)

Furthermore, it is possible to parameterize method summaries on receiver
objects. That is, a method summary may describe effects on the receiver object
by implicating a special py;s region rather than by implicating the regions con-
taining every possible receiver object explicitly. (This is analogous to universal
polymorphism over receiver objects or to an object-sensitive analysis.) We can
thus instantiate a method summary at a call site by replacing py;s with a set of
regions containing every possible receiver object.

Identifying effects on fields of the receiver object is straightforward, since
accesses to fields of this are, in most cases,’ statically distinguishable from
accesses to fields of other objects. By parameterizing effects on receiver objects,
we can ascribe more precise effect signatures to method invocations; as we
shall see, we can also use this information to identify methods whose effects
are strictly confined to the receiver object.

2.2 PURITY AND SAFETY

With the definitions from Section 2.1, we can now define more clearly the
notions of accessor and mutator methods.

Definition 2.4 An accessor method is a method that exhibits at least one READ
effect on a field of the receiver object and returns a value.

Definition 2.5 A mutator method is a method that exhibits at least one WRITE
effect on a field of its receiver.

Note that a method may be both an accessor and a mutator. Good style
dictates that a method that changes mutable state will not return a value and
that methods that return a value will not change state.®

Methods may also be pure. The classic definition identifies a method that
exhibits no effects on durable state as pure. However, this definition is rather too

5The local variable associated with the receiver object is always local o at the bytecode
level; since the Java language does not permit assignment to this, we know that any field access
to the object referred to by local o is accessing a field of this. If another local aliases this, this
assumption is imprecise but sound.

SThis principle was named command-query separation by Meyer (1988). The PiMA model
accounts for programs that do not exclusively exhibit good style, as we shall see in section 2.3.

18

restrictive, since it doesn’t admit idempotent methods that create and modify
durable state in order to complete their work. A better definition — due to
Leavens et al. (1998, 2006) and applied for static analysis by Salcianu and Rinard
— characterizes a method as pure if and only if it does not modify any state that
exists immediately before method entry. This less-restrictive definition of purity
captures a notion of method purity as the absence of potential interference
with other code: a method may have effects on durable state that it creates —
and that is not available to other methods until after it exits.

We can also identify some methods as read-only — these are methods that
may have READ effects (but not WRITE effects) on durable state that exists
before method entry. Note that all pure methods are also read-only methods.

If we are to characterize the purity of methods in typical object-oriented
programs, we may wish to characterize instance methods by the effects that
they have on durable state that exists outside of the receiver object. As a
consequence, we develop notions of pure and read-only methods that are
sensitive to whether effects occur to state within the receiver object or not:

Definition 2.6 An externally-pure method is one whose effects on durable
state occur only to the receiver object (that is, in the this abstract region) or on
state that did not exist immediately before method entry. Put another way, an
externally-pure method is pure with respect to all state outside of the instance
it is operating upon. All pure methods are also externally-pure.

Definition 2.7 An externally-read-only method is one whose WRITE effects
on durable state occur only to the receiver object or to state that did not
exist immediately before method entry. Put another way, an externally-read-
only method is read-only with respect to all state outside of the instance it is
operating upon. All externally-pure methods are also externally-read-only.

Intuitively, externally-pure methods M; can execute asynchronously on
some receiver object O provided:

. they execute in the order in which they would be invoked in a sequential
execution, and

. the main thread synchronizes with the delegate thread for O, ensuring that all
pending method invocations on O have completed, before either reading the
state of O or modifying the state of O without using a mutator method on O.

19

The former constraint can be met by replacing method invocations with sup-
port code to insert the invocation into a queue of pending asynchronous calls
in the delegate thread. If all method invocations are enqueued for the delegate
thread, then they will execute in program order. The latter constraint can be
satisfied statically, by demarcating only objects whose fields are strictly accessi-
ble through instance methods, or dynamically, by placing code in field read or
write barriers to block until all pending activations complete if a load or store
is to a field of a demarcated object.

If these conditions are met, then PIMA can guarantee a race-free execution
with sequential execution equivalence, which we define as follows:

Definition 2.8 Sequential execution equivalence (SEE) is a property of a paral-
lel execution that holds when every dynamic read sees the value written by the
same dynamic write that it would in a serial execution with the same inputs.

Many methods are externally-pure, but many interesting methods are
externally-read-only or may even modify state contained in objects other than
the receiver. piMmA would be of limited utility for real Java programs if it were
restricted to exploiting OLP only in externally-pure methods, especially since
the effects of many methods that are not externally-pure are unlikely to in-
terfere with those of methods executing on other objects. For example, an
externally-read-only method might read only data that will not change during
its continuation. A method that is not externally-pure might only modify ob-
jects that are completely encapsulated by its receiver. It should be clear that
there are methods that are not externally-pure but that can safely execute in
parallel without violating SEE, and these can often be identified by program-
mers. In Chapter 4, we define more clearly the sorts of effects that will not
cause a method invocation to violate SEE and present analyses that automati-
cally identify a broad range of methods that are suitable for safe object-level
parallelism.

2.3 THE PIMA MODEL

PIMA extends the Java language with support for asynchronous method invo-
cations in order to exploit OLP. As a consequence, it introduces parallelism by
executing some instance method invocations concurrently with their continu-
ations, synchronizing when the result of a computation is required by dataflow
in the main thread. In this respect, PIMA is similar to the future abstraction of

20

vtable entry

points here _>| prologue actual method body epilogue

Figure 2.5: Typical method layout, with virtual function table pointer.

Baker and Hewitt (1977) and Halstead (1985); the wait-by-necessity concept
of Caromel (1993); and the lazy wait construct of Meyer (1993). PIMA takes
the flexibility of future, which can be applied to any expression, and presents
an abstraction that is applicable to object-oriented programs, in which the
“result of a computation” may be a change to the durable state associated with
an object and not merely the irreducible value of an expression.

Other extant methods for parallelizing object-oriented programs designate
objects for parallel execution based on class membership; for example, methods
on instances of classes that extend Thread in Java (Lindholm and Yellin 1999)
or on instances of classes annotated separate in Eiffel (Meyer 1993) may execute
in a separate thread. pIMA, on the other hand, identifies potential concurrency
in a manner orthogonal to class membership: by annotations on an instance.
Whether or not an object’s methods may execute asynchronously with pPiMma is
simply a property of the instance and the context of the method invocations.
As a result, PIMA enables programmers and tools to opportunistically exploit
implicit parallelism that library developers and application programmers may
not have anticipated.

Logically, PIMA associates one delegate thread with each object. A delegate
thread is a process that exists to execute asynchronous method invocations.
More than one asynchronous method invocation may be in flight on a particular
delegate thread at any one time; the delegate thread maintains a queue of
invocations to execute in program order. While each object has its own logical
delegate thread, only a small number of delegate threads will be active (that is,
currently executing on virtual processors in the virtual machine or runtime) at
any given time.

Before we discuss the operational details of PiMA, we shall review some
details of runtimes for object-oriented languages. A standard layout for a
compiled method consists of a prologue, which sets up the activation record
and ephemeral state for the method invocation; the method body, or actual
instructions of the compiled method; and the epilogue, which cleans up after
the method. In order to support receiver polymorphism, each object has a
virtual function table (or vtable), which stores the addresses of methods with

21

certain names; this allows methods to be dispatched dynamically based on the
class of the receiver. (Each object logically has its own vtable, but one physical
vtable may be shared among all instances of a class.) Figure 2.5 shows the layout
of a method and the destination of a virtual function table pointer referring to
the beginning of that method.

An object is demarcated for asynchronous execution by a special annotation.
When the runtime encounters this annotation on a reference R, it does several
things; we first provide a brief overview before discussing each task in greater
detail:

. First, the runtime ensures that R is currently a suitable candidate for parallel
execution. Specifically, it ensures that a virtual processor is available to execute
methods on R. If one is not available, the annotation is ignored and execution
proceeds serially. If one is available, the runtime continues with the next task.

. The runtime then creates a delegate thread for the object referred to by R, if one
does not already exist, and binds this thread to an available virtual processor.

. Finally, it replaces the instance methods of the object referred to by R with
special proxy methods that control communicating information about asyn-
chronous invocations to the delegate thread and synchronizing with the dele-
gate thread when its results are required by the main thread.

The first task that the runtime must perform with a demarcated object
is ensuring that it is a good candidate for parallel execution. This has two
components: safety and profitability. In a simple implementation of PimMA,
safety is the responsibility of the programmer or compiler — it is not checked
by the runtime — and ensuring profitability is limited to ensuring that there
is a virtual processor available to execute the methods of a given object asyn-
chronously. If effects annotations are available, then the runtime can use those
in order to guarantee that executing a method asynchronously will not violate
set. (Chapter 4 presents a system for automatic inference of computational
effects.)

The runtime must then create a special delegate thread to execute asyn-
chronous method invocations for a given object and schedule this thread to
run on an available virtual processor. This thread simply repeatedly dequeues
method invocations — consisting of method addresses and “environments” of
actual parameter values. It then executes method invocations by setting up
a synthetic prologue — that is, a stack frame with the actuals for a particular

22

vtable entry . . Delegation code enqueues a method
prologue delegation code epilogue activation for a delegate thread to execute.

/J

| 1o {r0=0x1234,r1=42,..,r6 =17, ret=...}

points here

___-rl actual method body | epilogue |

Figure 2.6: Proxy for a mutator method, with vtable pointer and updated
delegate invocation queue.

vtable entry sync ;
points here prologue code cleanup actual method body epilogue

Figure 2.7: Proxy for an accessor method, with vtable pointer, synchronization
point, cleanup code, and original method body.

invocation and a return address that points back to the delegate thread loop —
before jumping to the beginning of the actual method body.

In order to ensure that instance methods are actually delegated, the runtime
must replace instance methods on a delegated object with proxy methods.
Since mutator methods may execute asynchronously, their proxies, as shown
in Figure 2.6, enqueue a method invocation record to the delegate thread.
If only the main thread is delegating method invocations, then changes to
object state will occur in program order. Accessor methods, on the other hand,
must wait for all pending state changes to complete before they inspect the
state of a demarcated object. As a consequence, their proxies are rather more
complicated (see Figure 2.7): they block, waiting for all pending delegated
invocations to complete; they optionally “clean up” by reverting the object to
an un-demarcated object; and finally, they execute the accessor method body
in the main thread. Obviously, some methods both modify object state and
return values; PIMA generates accessor proxies for these.

2.4 RELATED WORK

Many other parallelism models have been proposed for constructing parallel
object-oriented programs, or for adding concurrent execution to otherwise
serial programs with minimal effort. In this section, we place pimA and oLP in
context by examining the most relevant related work.

23

There is a long history of languages that support the deliberate construction
of parallel programs — as we have mentioned, Simula 67 (Dahl et al. 1970)
provided a mechanism to associate objects with separate threads of control.
A great deal of effort has gone towards developing models and abstractions
that make it easier to write programs that make progress and avoid data races,
often by integrating parallel execution or synchronization with other language
features like modules or scope.

Concurrent mostly-functional evaluation

ALGOL 68 (van Wijngarden et al. 1975; §3.3) provided collateral clauses, which
were sequences of statements with an unspecified evaluation order; the clause
would complete when all of the statements it contained had completed. ALGOL
68 also provided parallel clauses, or collateral clauses with semaphore-based
synchronization. By treating routine parameter bindings as collateral or parallel
clauses, ALGOL 68 enabled the possibility of concurrent parameter evaluation
and recursion parallelism.

Friedman and Wise present opportunities for parallelism available in a
purely applicative (i.e. side-effect free) language with “suspended cons” When
cons is evaluated in their language, it returns a structure consisting of suspen-
sions of its arguments. A suspension is like a promise in Scheme (Abelson et al.
1998) or a call-by-need thunk: a procedure that is evaluated at most once; it
can be coerced, or evaluated and replaced with its result. In a language in which
every cons is suspended, idle processors may be devoted to coercing suspen-
sions that are soon to be required by the main computation. The approach
Friedman and Wise describe is transparent to the programmer and relies on
cooperation between the compiler and the runtime system.

Baker and Hewitt (1977) coin the term call-by-future to describe a calling
convention in which each formal parameter of a subprogram is bound to a
process that will evaluate the expression passed to that parameter. (Unlike the
concurrent parameter evaluation available in ALGOL 68, Baker and Hewitt’s
approach is implicit.) They also introduce the notion of a future, a 3-tuple
of: (1) a process to evaluate an expression E, (2) a memory location to store
the result of evaluating E, and (3) a queue of processes waiting for E’s result.
Baker and Hewitt describe using futures for eager evaluation in applicative
languages; thus, the main focal point of their work is on garbage collection of
processes that are evaluating expressions whose results are not required by
program dataflow.

24

The Multilisp language (Halstead 1985) generalizes call-by-future with
the future annotation. Binding a variable x to (future v) spawns a process to
evaluate v and binds x to a token representing its eventual result. Internally,
variable accesses perform a touch operation, which checks the run-time type
tag of an object to see whether or not it is a suspended future. If it is, then
the accessing process blocks until the calculation of the future is complete.
In programs written in mostly-pure languages like Multilisp, there is often a
substantial amount of implicit parallelism. By annotating a program with future,
a programmer may indicate to a compiler which tasks are most profitable to
execute in parallel.

Moreau (1996) developed a semantics for Scheme with future; his seman-
tics treats side effects and first-class continuations. He establishes future as
a semantically-transparent annotation by way of several successive abstract
machines, each with its own operational semantics. A formalism for future that
includes side effects is a necessary step towards reasoning about real programs
with future. However, the treatment of side effects in Moreau’s semantics
is quite conservative, requiring synchronization upon any access to shared
memory if a process computing the value of a suspended future has accessed
shared memory.

A future-like construct is part of the current Java concurrency library
(Lea 2004), although Java futures are opaque placeholders for eventual values
rather than transparent promises. Several groups have sought to increase the
applicability and convenience of Java futures. Notably, Pratikakis et al. (2004)
developed type-safe transparent proxies for Java future objects. Welc et al.
(2005) demonstrated the feasibility of using software transactional memory to
guarantee the safety of Java futures.

Concurrent objects

The future model is flexible enough to expose a great deal of parallelism in
mostly-functional languages with few or no side effects, but may be lacking for
contemporary imperative object-oriented languages, in which the result of a
computation is as likely to be an update to the state of some object as it is to be
a simple value. Furthermore, imperative languages with shared state require
some form of mutual exclusion between threads, whether by synchronization
at any change to sharable state (as Moreau’s approach), or by using optimistic
concurrency control (as Welc et al.).

The monitor abstraction (Hoare 1974) unifies mutual exclusion and lexical

25

scope, making it more difficult for programmers to accidentally fail to acquire
(or release) a lock. Monitors find widespread application today in the Java
language, standard library, and virtual machine (Lindholm and Yellin 1999),
which provide support for multiple concurrent threads of execution and a
limited form of monitors. In Java, the notion of concurrency is tied to the
notions of inheritance and subtyping. A Java thread is an object, and it appears
to the programmer as an instance of either a subtype of java.lang.Runnable
or a subclass of java.lang.Thread. Such classes are treated specially by the
virtual machine, and contain methods to spawn new lightweight processes.

Two proposals to extend Eiffel with concurrency brought future-like con-
currency more fully into the object-oriented world. In both Eiffel// (Caromel
1993) and scoopr (Meyer 1993), the results of an asynchronous computation
may be some change to the state of a particular object. The major differences
between these two proposals relate to how parallelism is introduced and when
results are required.

Meyer’s (1993) scoop system integrated concurrency naturally into Eiffel’s
design-by-contract mechanism. In sSCOOP, objects and classes may be declared
as separate.” Methods invoked on separate objects or instances of separate classes
will execute asynchronously on a separate virtual processor. Synchronization
and ordering constraints on methods of separate objects are enforced by the
precondition assertions required by design-by-contract, and asynchronous
method invocations are queued by the separate object and executed in program
order. The client of some method of a separate object will block waiting for
its result (and the completion of any pending methods on the base object);
the semantics here are akin to spawning a future and immediately executing a
touch operation. As a result, a client of a separate object will only block when it
requires a value from that object, and no sooner. Meyer calls this property lazy
wait. Lazy wait is possible because Eiffel distinguishes between commands,
or methods that update state but return no value, and gueries, or idempotent
methods that inspect state.

Caromel (1993) presents Eiffel//, a method for integrating concurrency
into Eiffel that differs from Meyer’s in several important respects. The main
and most important difference is that Eiffel// distinguishes between passive
objects and active objects. Active objects are those that have an associated
independent thread of control, and references to them may be shared between

7It is important to note that the separate designation is orthogonal to the inheritance
mechanism; a separate class may inherit from a non-separate class and vice versa.

26

processors. By contrast, methods on passive objects execute in the same thread
as the caller; furthermore, passive objects have thread-specific visibility and
cannot be shared between processors. Another difference between Eiffel//
and scoop is that the concurrency model in Eiffel// is integrated into the
inheritance mechanism: all active objects inherit from a class PROCESS. Finally,
Eiffel// treats the results of asynchronous method calls more like futures than
scoopr does. Whereas scoop synchronizes when the result of an asynchronous
method call is assigned to some variable, Eiffel// synchronizes when the result
is used. Caromel terms this property wait-by-necessity.

PIMA in context

Our goal in designing PIMA was to develop a model for parallel construction
and execution of object-oriented programs that was flexible, imposed little
cognitive burden on the programmer, and was amenable to automatic safety
checking and automatic parallel task extraction.

future and related models like ALGOL 68’s collateral clauses integrate well
with existing language features (i.e. expression evaluation or block structure)
and present a reasonable mechanism for evaluating independent expressions
concurrently. However, these models are not well-suited for concurrent execu-
tion of object-oriented programs, which exhibit many computational effects
and in which the result of a subprogram call may well be state changes and
not merely eventual values. A future-like construct — confusingly, also called
Future — appears in the Java standard library as of Java 5, but it suffers from
the same limitation: rather than exposing the capability to execute arbitrary
application code in parallel, it simply presents a mechanism to execute a task
and block when its final value is required.

The Eiffel// and scoopr models, due to Caromel and Meyer, are a better
fit for purposeful construction of object-oriented programs, and impose little
cognitive burden on the programmer, since they are integrated with well-
understood language features: Caromel unifies parallelism and inheritance
(all active objects are instances of classes that extend PROCESS), while Meyer
unifies parallelism and class membership (all objects that may run in separate
threads are instances of classes that are designated separate, but this designation
is orthogonal to inheritance). However, this mechanism is somewhat inflexible,
since a programmer must decide early on that either al// instances of some class
will execute in their own threads or none of them will.

Standard Java threading unifies parallelism with subtyping and offers monitor-

27

based concurrency control. Java threads are always available to Java program-
mers, and the lexically-scoped monitors eliminate some common errors. Fur-
thermore, Java’s standard library commendably provides synchronized data
structures. However, the Java approach is inflexible, in that it requires a partic-
ular structuring of a class hierarchy and demands that programmers encode
some machine-specific information — about the number of threads that they
expect to use and the size of parallel tasks — into any parallel decomposition.
This inflexibility impacts not only programmers but also tools that seek auto-
mated parallel decompositions. Furthermore, the standard pitfalls of parallel
programming — race conditions, starvation, deadlocks, and priority inversion —
are all just as possible when programming in Java threads as in other models.
While a great deal of fine work has sought to present restricted models for
race-free programming (Boyapati et al. 2002; Permandla et al. 2007) or to find
races in standard Java programs (Choi et al. 2002; Naik et al. 2006; Naik and
Aiken 2007), it is clear that unrestricted Java threads are not a suitable model
for automated program decomposition and are also not readily amenable to
automated safety checking.

PIMA imposes little cognitive burden on the programmer by identifying
implicit object-level parallelism, finding concurrent tasks from methods on
individual demarcated objects. By supporting demarcation annotations on
individual objects, pimA provides the flexibility of future-like models (in which
any arbitrary expression may execute in parallel) with the suitability for object-
oriented programming of Eiffel// and scoop. Finally, it offers a clear path to
safety properties via SEE; as we shall discuss in Chapter 4, establishing the safety
of preexisting annotations and even adding safe demarcation annotations can
be fully automated.

3 DECLARING BYTECODE PROCESSORS AND ANALYSES

For this shall never be proved, that the things that are not are; and
do thou restrain thy thought from this way of inquiry.

— PARMENIDES OF ELEA (5TH C. BCE, TRANS. BURNET)

It is possible, also with the old conception of logic, to give at the
outset a description of all “true” logical propositions.

Hence there can never be surprises in logic.

— LupwiG WITTGENSTEIN (1917, TRANS. OGDEN)

In this chapter, we introduce the DIMPLE" program analysis framework for
Java bytecodes. biIMPLE™ (pronounced “successor dimple”) extends our earlier
work on the DIMPLE framework for interactive, declarative, scalable program
analysis (Benton and Fischer 2007) by adding several major features: static
single assignment (ssA) form, explicit domains for analysis entities, support
for multiple analysis solver backends, and an interface for annotating Java
bytecodes with analysis results. This chapter is self-contained and does not
assume prior knowledge of the original DIMPLE system.

Program analyses provide static answers to questions about the dynamic
behavior of a program. A researcher who wishes to develop a new program
analysis must engage in two separate activities: devising a specification for
the analysis and engineering a suitably efficient implementation. Developing
a correct specification can be difficult and error-prone, as a correct analysis
specification must properly treat all of the features and subtle corner cases
in a given language. However, even given a correct specification, the effort
necessary to produce an efficient implementation may be substantial or pro-
hibitive. The implementer’s task is difficult due to the disconnect between a
formal analysis specification and an executable implementation.

Analysis designers typically specify analyses in a declarative style: whether
as a system of constraints (Andersen 1994; Fihndrich and Aiken 1997; Rountev
et al. 2001; Kodumal and Aiken 2005; Milanova et al. 2005), as type inference
rules (Palsberg 2001; Steensgaard 1996; Diwan et al. 2001; Aldrich et al. 2002),
or as a fixed-point of a system of dataflow equations. Many analyses also admit
natural specifications as reachability queries on context-free languages or as
logic programs (Reps 1998; Esparza and Podelski 2000; Sridharan et al. 2005;

29

30

Tomb and Flanagan 2005; Whaley and Lam 2004; Lam et al. 2005). General
solvers for these sorts of problems have benefited from advances in logic
programming language implementation; several are quite efficient. However,
most existing solvers are far from ideal for rapid prototyping of new analyses.

Consider an idealized version of the process a researcher undertakes when
developing a new program analysis. The designer:

. Decides which abstract domains are interesting, and how best to model pro-
gram properties as mathematical structures;

. decides how individual kinds of program statements contribute to the analysis
results;

. writes a preprocessor to extract analysis relations from program source code;
and finally

. develops some sort of solver (or uses a preexisting specialized solver) to answer
queries about the generated relations.

Since the analysis itself is likely to be specified declaratively, it would be
ideal to use an analysis framework that could execute such a specification with
little or no modification. Unfortunately, almost all existing analysis frameworks
that support declarative specifications only aid users with the final step of this
process: namely, providing a solver for analysis rules in a particular formalism.
Many require extensive preprocessing or time-consuming automated optimiza-
tions before running an analysis, thus discouraging an interactive development
style, casual experimentation, and rapid prototyping of new analyses.

We have developed pIMPLE ™, a fully-featured, declarative, and extensible
analysis framework for Java. It is fully-featured in that it provides functionality
for every step of the analysis design and development process. It is declarative
in two ways: first, user-specified rules are written in a declarative language;
also notably, biMPLE™ itself is primarily implemented in the Yap Prolog system
(Costa et al. 2000). Finally, the major components of DIMPLE™ are extensible:
statement preprocessors may depend on arbitrary, user-defined Prolog proce-
dures; and DIMPLE™" is designed to support multiple, user-definable solvers to
generate answers to analysis queries.

DIMPLE " consists of a typed intermediate representation of Java bytecodes
and a domain-specific language that allows users to specify program analysis
implementations in an essentially declarative fashion, much as they might write

31

an analysis specification. Unlike most program analysis frameworks, DIMPLE "
represents program texts, derived relations, and analysis rules uniformly — all as
relations in a Prolog database. (If users choose to use the built-in tabled Prolog
solver, then analysis results are also represented as Prolog clauses.) DIMPLE "
thus enables analysis designers to develop declarative specifications for every
stage of analysis development and evaluation: deciding which domains are
under consideration and which program statements are relevant, extracting
relations from relevant program statements, and answering queries based on a
system of relations and analysis rules.

DIMPLE™ is essentially different from other analysis frameworks in that it
offers two important capabilities:

. DIMPLE" provides a total, round-trip solution to analysis design and evalua-
tion. That is, an analysis designer may use DIMPLE" to produce a declarative
specification for every component of an analysis. DIMPLE™ allows the user
to define procedures for any necessary preprocessing of the program text in
Prolog. Given declarative, user-supplied specifications, DIMPLE" then automat-
ically generates a statement processing routine that generates relations from
the program text and the rules that govern analysis results. Finally, DiMPLE™"
supports generating analysis solutions either via interfacing with an external
solver or via a built-in solver based on tabled Prolog.

. DIMPLE" provides a relational, declarative model for specifying program anal-
yses. An analysis designer may thus execute an analysis specification that is
very similar to the sort of specification that might appear in a technical paper.

There exist several excellent solvers that have been used to great effect for
analysis problems. However, these tools require that the analysis designer use
some external tool to develop a preprocessor that translates from program text
to relations. Some analysis frameworks, such as those available within research
compilers, enable users to develop preprocessors as well as solvers within
the same tool, but pimMpLE™, like its predecessor DIMPLE, enables round-trip
analysis development in a declarative style.

In the piMPLE™ framework, program texts (in an intermediate representa-
tion of bytecode instructions), analysis rules, and analysis results are stored
in a database of Prolog relations. Since analysis results are in the same format
as the program to be analyzed, it is possible for analysis designers to reuse
the results of costly analyses as program annotations — and, in fact, to store

32

these annotations directly in the same database as the program text instead of
recalculating the analysis results later.
The DIMPLE" program analysis framework features:

. asystem for encoding an intermediate representation of Java bytecodes as a
database of facts,

. a declarative framework for program analysis, which enables analysis users to
prototype, develop, and debug new program analysis specifications by generat-
ing analysis implementations directly from specifications, and

. a mechanism for debugging program analysis specifications that combines the
efficient execution of tabled evaluation with the tracing capacity of conventional
Prolog evaluation.

The combination of these features in one system enables rapid and seamless
analysis design, development, and evaluation.

3.1 OVERVIEW OF THE SYSTEM

DIMPLE" comprises three parts. The front-end translates from Java bytecodes
to the piIMPLE™ intermediate representation (IR): a set of Prolog relations that
fully describe the input application and library classes. The back-end provides
a framework of rules and a domain-specific analysis language to implement
program analyses as declarative queries on a database of relations; it translates
from user-specified statement processing and analysis rules into code that
implements a bytecode preprocessor and the actual analysis. The query engine
actually generates an exhaustive solution to the analysis problem. In the original
DIMPLE system, the query engine was part of the back-end and implemented
in tabled Prolog; pIMPLE" enables users to plug-in different external solvers to
meet different application requirements.

We have implemented the biMPLE™ front-end as a whole-program transfor-
mation that extends the Soot compiler framework. Soot (Vallée-Rai et al. 1999)
converts from stack-based bytecode to a typed three-address representation
called Jimple and generates a conservative method call graph. Our transforma-
tion then translates from Jimple’s abstract syntax to the concrete syntax of a
database of DIMPLE™ IR relations. As we have stated, methods are modeled as
sets of statements and all intraprocedural control flow is modeled by an explicit
control-flow graph. It is therefore possible to use DIMPLE™ to implement either

33

flow-sensitive or flow-insensitive analyses; the analysis developer need merely
decide whether or not to ignore control flow when declaring analysis rules.

We have implemented the pIMPLE™ back-end in the Yap Prolog system
(Costa et al. 2000). The back-end consists of:

. a domain-specific language for specifying analyses,

. alibrary of relations and rules that are available to client analyses and describe
various aspects of Java’s semantics and type system,

. a code generator that translates from the domain-specific language into pro-
grams that implements a statement processing routine and an analysis evalua-
tion routine, and

. an interface to a query engine that executes the generated code to produce
exhaustive analysis results.

The piMPLE" back-end supports multiple query engines and enables users
to develop support for their own query engines. However, it also includes a
built-in query engine that makes use of the Yap system’s support for tabled
execution. Tabled Prolog (Chen and Warren 1996; Rocha et al. 2005) supports
a table annotation on certain predicates. The results of a tabled predicate
are memoized; thus, each is evaluated at most once for each tuple of argu-
ments. Furthermore, a tabled Prolog system can automatically find a finite
fixed point of recursive and mutually recursive tabled predicates. This property
enables analysis designers to specify many relations that naturally admit a left-
recursive definition in a straightforward and direct way, without considering
nonterminating evaluation.

3.2 USING DIMPLE"

We shall now present a high-level view of biMPLE™ and discuss a typical user’s
interactions with the DIMPLE™ system while developing a new analysis. Figure
3.1 provides an overview of DIMPLE s architecture; we shall refer to each
component in the following overview.

A pimpLE" user is likely to begin by creating databases of DIMPLE™ IR
relations for several interesting programs, in order to evaluate a new analysis
on representative inputs. This task requires the DimpleGenerator application,
which processes Java class files. DimpleGenerator extends the Soot compiler

34

.............................. User-supplied statement processing and
analysis rules

DIMPLE rule code

.
. ' .

N - N ' generator

N DimpleGenerator N N (Optional) user-supplied

X compiler phase . X . Prolog predicates

' ' f f

' ~ '

DIMPLE
internal 0 r

rules Solver-specific

0
0 0

0 B ' .

. Jimple IR, conservative N N . . infrastructure .

. call graph N N Prolog 0 . :

. N 0 ' 0

0 N .

0 N .

0 N :

predicates
input program
(class files) [T
0
DIMPLE™ query engine

Query results
...

Yap Prolog Refations g Pluggable solver
system and rules

Figure 3.1: High-level overview of the DIMPLE™" system’s architecture. Shaded
items indicate infrastructure developed by other groups; italics indicate user-
supplied inputs

framework and produces a DIMPLE" IR database with relations corresponding
to every statement in a given application and in each of its libraries. The pD1Mm-
PLE" IR also includes relations describing the application and library class hi-
erarchies and relations describing a conservative approximation of the method
call graph. (We discuss the piMPLE™ IR further and provide some example
relations in Section 3.3.)

The user may then load the IR database into the Prolog system and begin
asking queries about the program. This sort of interactive experimentation can
often be a productive prelude to developing the actual statement processing
and analysis rules. By exploring the sorts of statements and relations that may
be relevant to a particular analysis in advance of specifying the analysis, the user
may be able to note subtle details that might have otherwise been overlooked.
After some experimentation, the user will begin to use the piMPLE™ analysis
language to specify a statement processing routine and the analysis. (We
discuss the DIMPLE " analysis language in Section 3.4.)

Most analyses will only need a subset of the relations in the DIMPLE™" IR
database. All analyses will benefit from simplifying the program relations
by preprocessing the input program and deriving analysis-specific relations
from the DIMPLE™ IR. (At the very least, doing so will result in a clearer
presentation.) Consider the following DIMPLE™ IR relation, which corresponds
to an assignment from one local variable to another:

stmt (unit(83),
assignStmt(local(local(12), method(62806), primtype(long)),
local(local(14), method(62806), primtype(int)))).

35

DIMPLE" creates explicit domains for most program entities of interest —
like statements, local variables, fields, and methods — and ascribes a positive
integer to each that uniquely identifies it in that domain throughout the whole
program. The clause above describes the statement at the globally-unique
program counter 83; it is of the form stmt (unit (PC), S), where PC is in the
domain of program counters (that is, unique identifiers for statements) and
S is a structure representing a particular statement. The particular statement
structure in this example is an assignStmt, which represents an assignment
between locals. Locals, in turn, are represented as structures with elements
from a domain of local identifiers, methods, and types. In this case, local
number 12 is receiving a value from local number 14; both locals are contained
in a method with unique number 62806.

The original DIMPLE IR used names instead of numbers (so all domains were
implicit); pIMPLE" has only retained names for types. Using names instead
of explicit numbered domains may aid readability in some cases, but it does
so at the expense of verbosity." Employing explicitly-numbered domains not
only makes the IR database smaller, but it also facilitates imposing an ad hoc
typing discipline on user-specified analysis and processing routines, enabling
DIMPLE" users to develop more robust code.

The clause above includes a great deal of detail about a particular bytecode
statement representing a particular assignment; not all of it may be useful
for every analysis application. It may be more convenient for the analysis
designer to derive a relation that omits some details that are not relevant to
a particular analysis. Perhaps the analysis designer is interested in knowing
that an assignment occurred between two locals, but some detalils, like the
program counter, method name, and variable types, are not relevant for a
particular analysis problem. In that case, the designer could preprocess the
above statement to a much simpler relation, like this one:

assign(12, 14).

Of course, the derived relations can be more involved than simple projec-
tions of structures into simpler structures. The statement processing routine
decides which statements are interesting for a particular analysis, and it may use
arbitrarily complex criteria to do so. To give two realistic examples, particular
derived relations may select only those statements that involve assignments to
locals of reference types, or only those statements that might throw unchecked
exceptions. A DIMPLE" user will specify a statement processing routine in

*The pIMPLE" representation contains no less information than the original DIMPLE Ir.

36

terms of declarative rules in the DIMPLE™ analysis language; these rules may
use user-defined predicates on DIMPLE™ IR statements, DIMPLE s internal
rules (which include facts and relations dealing with Java’s type system and
semantics), or any Prolog code. By combining arbitrarily complex selection and
projection rules, analysis users can develop extremely powerful preprocessors
in a declarative style. (We discuss the part of the pIMPLE™ analysis language
that defines statement processing routines in Section 3.4).

Once the analysis designer has declared statement processing rules, DIM-
PLE" can preprocess the input program. piMPLE™ affords several options here:
for prototyping, when a user may be interested in having the entire program
available, the statement processing routine will simply assert derived relations
into memory. DIMPLE" users who are using external solvers as query engines,
or who are using the internal tabled Prolog solver but demand maximum per-
formance, will use DIMPLE™ as a preprocessor. In so doing, they will write
derived relations to a file, discarding the Ir database so that an analysis will
operate strictly on a database of derived relations instead of on a database that
contains detailed information about every bytecode statement in the program.

If a DIMPLE " user chooses to use the built-in tabled Prolog query engine, it
is possible to keep the entire IR database in memory. Doing so incurs a cost
in heap usage, but has two key benefits: if one is prototyping an analysis, one
may decide that new or different derived relations might be useful. Since the
whole program is available, one may add these effortlessly. In addition, having
access to the whole program offers an advantage when debugging analyses: if
the whole program is available, DiMPLE™ allows users to see precisely which 1r
statements contributed to each derived relation.

The analysis designer may then prototype analysis rules interactively, by
issuing queries to the underlying tabled Prolog system. The user may then
commence developing analysis rules by writing them in DIMPLE™’s rule defi-
nition language. (See Section 3.4 for more information on the rule definition
language.) DIMPLE "’s code generator takes statements in the rule definition
language and converts them to tabled Prolog rules. The code generator also
generates support code to aid debugging analysis rules. The analysis designer
will not invoke this support code directly; rather, DIMPLE™ uses it to present
derivations of why particular analysis results hold. (See Section 3.5 for more
information on this capability.)

By default, generated analysis rules are asserted into the Prolog database.
The code generator can also write the generated rules and compiler directives
to a file, which can be compiled and loaded. Each of these is appropriate for

37

different situations, and DIMPLE ™" gives users the opportunity to decide which
to use at a given stage in the analysis development process. The former leads
to slightly slower execution times but affords greater flexibility for prototyping,
since asserted rules may be retracted or abolished. The latter option is most ap-
propriate for production analyses, since it offers the fastest possible execution,
but does not offer the opportunity to interactively change the analysis.

We shall now discuss the individual pIMPLE" components in greater detail.

3.3 THE DIMPLE"' IR

We have developed a typed intermediate representation (1r) for Java bytecodes.
Our representation is based on the Jimple 1r (Vallée-Rai et al. 1999) but has
an essentially declarative flavor: programs are represented as sets of relations,
analyses are specified in a domain-specific language that adds rules and re-
lations to the database, and analyses are executed by satisfying queries on
generated rules and relations. Java classes are represented in terms of subtyp-
ing relationships, sets of method declarations and sets of field declarations.
Methods are represented as sets of statements. All intraprocedural control
flow is explicit and is modeled by a control-flow graph for each method. The
abstract syntax of our representation is loosely based on the Jimple IR for Java
bytecodes, which is a component of the Soot compiler framework. We call our
representation DIMPLE" to reflect its declarative character and as an homage
to prior intermediate representations like Simple (Hendren et al. 1993) and
Jimple (Vallée-Rai et al. 1999).

pIMPLE ", like Jimple, is based on three-address code or register quadruples.
Each statement consists of variables corresponding to operands, an operation,
and a variable in which to place the result. Each statement has a simple, “flat”
form: all operands are either local variables, immediate values, or addresses,
not complex expressions. Object fields and array elements are treated in a
“load/store” fashion: they are loaded from memory, operated on as locals,
and stored back to memory. As a consequence, there is no single DIMPLE ™"
instruction, for example, to transfer a value from one heap location to another,
or to increment the value of an object field.

In contrast to the three-address code of pIMPLE™ and Jimple, the Java
virtual machine executes bytecode instructions that operate on a stack. Since
the stack is untyped, Java provides separate bytecode instructions for each
potential operand type. (Lindholm and Yellin 1999) As an example, there are
eight different bytecode instructions to load a value from an array element,

38

depending on the element type: one for object references and one for seven
of Java’s eight primitive types.” There are also many “special case” bytecode
instructions that incorporate immediate values in their opcodes. Of course,
the wide variety of bytecode instructions — and the very nature of stack-based
evaluation — greatly complicates analysis of unmodified bytecode. By basing
DIMPLE™ on an existing intermediate representation of bytecode that features
fewer kinds of operations than does bytecode, it is possible to express analyses
in terms of a simpler set of rules than it would if DIMPLE™ were to operate on
bytecode directly.

While the structure of the DIMPLE™ IR owes a great deal to the statements
and expressions of the Jimple IR, DIMPLE™ has the capacity to be more flexible
than a non-declarative representation. This flexibility is the primary advan-
tage of DIMPLE™ over Jimple and other non-declarative representations, and it
comes from the fact that DIMPLE™ represents programs as databases and is im-
plemented in Prolog. Prolog is a homoiconic language in which data and code
share the same representation. Furthermore, Prolog goal resolution does not
differentiate between the extensional database, or clauses and structures as-
serted as facts, and the intensional database, or clauses and structures derived
from the application of rules. In DiIMPLE™, the extensional database consists
of the piMPLE™ IR produced from a Java program and the built-in relations
describing Java’s type system and semantics. However, DIMPLE" users may
easily build a custom representation in the intensional database by defining
rules that derive new statements, replace old ones, and generally coalesce and
discriminate from the input IR, leaving only relations tailored for a specific
analysis problem.

We shall now discuss the individual pIMPLE™ IR relations.

Program-domain values and expressions

The first kinds of DIMPLE™ IR structures we shall examine are those that corre-
spond to Java values and expressions.

The Java language features several kinds of values: constants and local
variables of primitive (i.e. scalar) and reference (i.e. object or array) types. The
DIMPLE" IR models these kinds of values with fairly straightforward structures;
the simplest of these are the reference and constant structures (Table 3.1),

>The baload instruction is used for loading from arrays of byte values as well as from
arrays of boolean values.

39

Relation name Brief description Page

caughtExceptionRef/1 A reference to a caught exception ob- 129
ject (in a Java exception handler)

doubleConstant/1 A double-valued constant 129
floatConstant/1 A float-valued constant 130
intConstant/1 An int-valued constant 130
local/3 Associates a member of the local do- 131
main with its containing method and
type
longConstant/1 A long-valued constant 131
nullConstant/1 A constant null reference 131
parameterRef/2 An actual parameter value for the cur- 132
rent method
stringConstant/1 A reference to a constant String 132
thisRef/2 A reference to the receiver object for 132

the current method

Table 3.1: DIMPLE ' structures representing Java values and constants

Relation Brief description Page

addExpr/2 Integer or floating-point addition 129
divExpr/2 Integer or floating-point division (depending 129
on the types of operands)

mulExpr/2 Integer or floating-point multiplication 131
negExpr/1 Unary negation 131
phiExpr/1 ¢-function (for ssa) 132
remExpr/2 Integer modulus (remainder) 132
shlExpr/2 Integer bitwise shift left 132
shrExpr/2 Integer bitwise shift right 132
subExpr/2 Integer or floating-point subtraction 132
ushrExpr/2 Integer unsigned shift right 133

Table 3.2: DIMPLE" structures representing Java arithmetic and value expres-
sions

40

Relation Brief description Page
andExpr/2 Bitwise or logical AND 129
cmpExpr/2 Numeric comparison 129
cmpgExpr/2 Floating-point comparison (cf. dcmpg byte- 129
code)
cmplExpr/2 Floating-point comparison (cf. dcmpl byte- 129
code)
eqExpr/2 Value equality 130
geExpr/2 Greater-than or equal to 130
gtExpr/2 Strictly greater-than 130
leExpr/2 Less-than or equal to 131
1tExpr/2 Strictly less-than 131
neExpr/2 Value inequality 131
orExpr/2 Bitwise or logical or 131
xorExpr/2 Bitwise exclusive OR 133

Table 3.3: DIMPLE" structures representing Java comparison, bitwise, and
logical expressions

which describe constants of various types (e.g. intconstant/1), local variables
(Local/3). Table 3.1 also shows several structures that represent placeholders
for values that are set up outside of the current method, such as actuals for each
formal parameter (parameterRef/2 and thisRef/2), and thrown exception
objects in a a catch block (caughtExceptionRef/1). Of the structures in
Table 3.1, all can appear on the right-hand side of an assignment, but only
local/3 can appear on the left-hand side of an assignment. (DIMPLE" also
models heap stores and loads as assignments; we shall discuss heap locations
shortly.)

Expressions in Java source code evaluate into simple values before they are
used (either as the right-hand side of an assignment or as an actual parameter
to a method call). As a consequence, the values of expressions are explicitly
transmitted to their destinations. By contrast, the bytecode statements that
implement Java expressions in the jvM pop operand values from the stack and
push their results, thus implicitly communicating their results as an operand
for some other statement. For example, the Java-language expression 2 + 4

41

Relation Brief description Page
castExpr/2 Cast a variable to a compatible type 129
instance0fExpr/2 Reference-type compatibility test 130
interfaceInvokeExpr/2 Invoke an instance method with 131
interface-style virtual dispatch
lengthExpr/1 Array length inspection 131
newArrayExpr/2 Allocate and initialize a new array 131
newExpr/2 Allocate and initialize a new object 131
newMultiArrayExpr/2 Allocate and initialize a new multidi- 131
mensional array
speciallnvokeExpr/2 Invoke an instance method with 132
static dispatch (e.g. constructors,
private methods, etc)
staticFieldRef/1 A reference to a particular static field 132
virtualInvokeExpr/2 Invoke an instance method with stan- 133

dard virtual dispatch

Table 3.4: DIMPLE™ structures representing Java object and array expressions

Relation Brief description Page

arrayRef/2 A reference to a particular element of 129
a particular array

instanceFieldRef/2 A reference to a particular instance 130
field of a particular object

staticFieldRef/1 A reference to a particular static field 132

Table 3.5: DIMPLE™ structures representing heap locations

42

evaluates to 6. Were this expression to appear on the right-hand side of an
assignment, 6 would be explicitly transmitted to the location named by the left-
hand side of the assignment. The expression 2 + 4 compiles into the following
sequence of bytecode instructions: bipush 4; bipush 2; iadd;. Unlike the
result of the expression, which must be explicitly transmitted, the bytecode
statement implicitly transmits its result via the stack, leaving its result as an
operand for some future statement.

The DIMPLE™ structures that model Java-language expressions do so by
modeling the bytecode statements that implement these expressions. The level
of abstraction in the DIMPLE™ IR is closer to that of bytecode than that of Java
source; however, unlike the jvM the DIMPLE ™" IR is not stack-based, so the values
of expressions are transmitted explicitly via assignment to locals. Tables 3.2
and 3.3 show the structures that model operators over scalar values, including
arithmetic, logical, and comparison operators. (eqExpr/2 also models object
identity checking.)

Tables 3.4 and 3.5 cover structures that deal with expressions that op-
erate on references, including allocation (e.g. newExpr/2) and access paths
from a reference to a particular field or array value (e.g. arrayRef/2 and
instanceFieldRef/2). It also shows the four InvokeExpr/2 structures that
model the three types of method invocation expressions in Java:

. static method invocations (staticInvokeExpr/2),
. virtual method invocations (interface— and virtualInvokeExpr/2), and
. statically-dispatched instance method invocations (specialInvokeExpr/2).

The latter corresponds to the invokespecial bytecode; it represents invoca-
tions of constructors and private methods.

Statements and program metadata

The second kinds of DIMPLE™ structures we shall examine are those model-
ing the contents and structure of programs. Informally, Java programs consist
of classes, which may extend other classes or implement interfaces; each class
contains zero or more method and field declarations. Each method contains
a set of statements and an intraprocedural control-flow graph. Statements in
DIMPLE " are at lower level of abstraction than Java source language statements,
but are at a higher level of abstraction than bytecode statements. We have

43

Relation name Brief description Page

assignStmt/2 Local assignment, heap load (with heap loca- 129
tion as right-hand side), or heap store (with
heap location as left-hand side)

enterMonitorStmt/1 Entering an object’s monitor 130

exitMonitorStmt/1 Exiting an object’s monitor 130

gotoStmt/1 Unconditional branch 130

identityStmt/2 Assignment to “special” (single-assignment) 130
locals: formals, this, and caught exception
references

ifStmt/2 Conditional branch 130

invokeStmt/1 Invocation of a void method (or method 131
with ignored return value)

returnStmt/1 Return a value 132

returnVoidStmt/1 Return from a void method 132

stmt/2 Associates a program counter with a partic- 132
ular statement

throwStmt/1 Raise an exception 132

Table 3.6: DIMPLE™ structures representing Java bytecode statements

already mentioned one example of this level of abstraction: DIMPLE" expres-
sion structures (Tables 3.2, 3.3, and 3.4) correspond to independent bytecode
statements but may appear as constituents of DIMPLE™ assignment statement
structures.

Table 3.6 describes the DIMPLE ™ structures that model statements. Each
statement is in three-address form; so statements typically operate on locals
or immediate values. Most statement types are self-explanatory, but the two
kinds of assignment statements are worthy of special interest. DIMPLE™" iden-
tity statement structures (identityStmt/2) serve two purposes: to identify
locals whose values are set up outside of the current method body (i.e. those
corresponding to method actuals, to this, and to caught exception references),
and to identify their values.

DIMPLE' assignment statements (assignStmt/2) model standard assign-
ments as well as heap loads and stores; these are notable because expressions

44

Left-hand side Right-hand side Description

local/3 local/3 Local-to-local
assignment

local/3 any heap reference, Heap load

viz.: arrayRef /2,
staticFieldRef/1, or
instanceFieldRef/2

any heap reference local/3 Heap store

local/3 a constant or any Expression evaluation
arithmetic, logical, and assignment
comparison,
invocation, or reference
operation

Table 3.7: Statements modeled by legal DIMPLE™ assignment structures

may occur as their constituents. An assignStmt/2 has two constituent struc-
tures, corresponding to the left-hand and right-hand sides of a Java language
assignment. At least one side must be a local variable, but one side may be
a heap location (for heap loads and stores) or a simple expression; Table 3.7
details the possible kinds of assignment statement.

Analysis entities and domains

The final group of DIMPLE™" IR structures we examine, shown in Table 3.10,
represent entities in analysis domains. These are structures that uniquely
identify types, classes, methods, fields, statements, and variables. DIMPLE™
places every one of these entities in an explicitly numbered domain. This has
several benefits:

. It reduces the verbosity of the representation without reducing the information
content. A DIMPLE" user may make any clause more verbose via Prolog’s
portray/1 mechanism, which enables users to change the depiction of struc-
tures so that, for example, a method structure might be replaced with a string

45

Relation name Brief description Page

analyzed/1 True for a method that has been processed 129
by the front-end; enables DIMPLE™ analyses to
make conservative assumptions about open pro-

grams

cg_main/1 The main method; the root of the call graph 129

class/2 Associates an entity in the class domain witha 129
class name

concreteClass/1 True for “concrete” classes (i.e. those that can 129
be instantiated)

containsStmt/2 Indicates that a particular method contains the 129
statement at a particular program counter

field decl/7 Metadata relating to a field declaration 130

final/1 True for methods or fields declared final 130

immedExtends/?2 Indicates the immediate subclassing relation 130

immedImplements/2 Indicates the immediate subtyping relation 130

interface/1 True if a “class” is really a Java interface 131

mainclass/1 Identifies the class containing this program’s 131
main method

method decl/7 Metadata relating to a method declaration 131

publicClass/1 Indicates that a particular class is declared as 132
public

stmtContainedBy/2 Inverse of containsStmt/2 132

unitActual/3 Indicates that a particular local is passed asan 133
actual parameter at a particular invocation site

unitMaySelect/2 Indicates that a method invocation site may se- 133

lect a particular method body

Table 3.8: DIMPLE ™" structures representing program structure and metadata

46

Relation name Brief description Page

branches/1 True for branch statements 129
fallsThrough/1 True for statements that may transfer control 130
to their immediate successor (contrast with

branches/1)
offset/2 Describes a bytecode offset into a particular 131
method
param_type/3 Indicates the type of a formal for a given method 132
return_type/2 Indicates the return type of a given method 132
succ/2 Indicates that one statement may succeed an- 132

other in normal control-flow
stmt_offset/2 Indicates the bytecode offset of a particular 132
statement

Table 3.9: DIMPLE™ structures representing method structure and control flow

Relation name Brief description Page

arraytype/2 Describes the type of a Java-language array 129
of a given dimension and base type

class/1 Denotes a member of the class domain 129
field/1 Denotes a member of the field domain 130
local/1 Denotes a member of the local domain 131
method/1 Denotes a member of the method domain 131
primtype/1 Denotes a primitive Java-language type 132
reftype/1 Describes a Java-language reference type 132
subsig/1 Contains a method subsignature; that is, its 132
name and an encoding of its parameter types
unit/1 Denotes a member of the program counter 133
domain, which uniquely identifies state-
ments

value_unit/2 Used with ¢-expressions to denote pairs of 133
values and predecessor statements

Table 3.10: DIMPLE" structures representing analysis-domain entities

47

representation of that method’s signature.

. It greatly simplifies operating with external solvers like BANSHEE (Kodumal
and Aiken 2005) and BDDBDDB (Whaley and Lam 2004; Lam et al. 2005), which
require explicit domains.

. It enables DIMPLE™ users to program defensively and impose an ad hoc typing
discipline on their analyses. It is trivial to check whether or not a given identifier
is a valid member of any particular domain.

An extended example

We conclude our discussion of the DIMPLE™ IR with an extended example of
a small Java program translated into bytecode and into the DIMPLE" IR. As
we shall see in Sections 3.6 and 3.7, the DIMPLE™ IR is only a starting point;
the piMPLE™ system makes deriving analysis-specific representations quite
straightforward.

Figure 3.2 shows the Java code for a simple “cons cell” class. Each instance
of Cell contains an int field called car and a reference to another Cell called
cdr. The car and cdr fields can be inspected by instance methods of the
same names, but the Cell class makes no provision for modifying either. The
DIMPLE " representations of the basic metadata for and structure of Cell class
are given in Figures 3.3 and 3.4; these are fairly straightforward. Note that the
DIMPLE " representation includes details that are implicit in the Java source,
such as the fact that Cell extends Object.

Figure 3.5 shows the bytecode translations of two methods: cons(int,
Cell) and length(). These bytecode listings are in the format produced by
the decompiler in the standard javap tool: each instruction is prefaced by its
offset in the method’s code array, and immediate operands that are encoded
into the instruction are made explicit. In Java, immediate operands typically
correspond to entries in a class’ constant pool, which contains numeric, string,
method signature, and class name constants. An example statement featuring
immediate operands is at offset 0 of cons(int, Cell), which creates a new
instance of the Cell class. The class to instantiate is given by the entry of a
class constant in the constant pool for the Cell class; in this case, the constant
representing the Cell class is at position 4 in the pool.

Recall that bytecode is stack-based and no values are transmitted explic-
itly; rather, instructions take their operands from the stack. So, the ireturn

48

/** Represents a cons cell. */
public final class Cell {
private int car;
private Cell cdr;

public Cell(int car) { this.car = car; }
public int car() { return car; }
public Cell cdr() { return cdr; }

public static Cell cons(int car, Cell cdr) {
Cell hd = new Cell(car);
hd.cdr = cdr;
return hd;

public int length() {
return (cdr == null) ? 1 : 1 + cdr.length();
}

public void print() {
System.out.println(car);
if (cdr !'= null) cdr.print();

public static void main(String[] args) {
Cell 1s = new Cell(5);
for(int 1 = 4; i > 0; i—-) 1s = Cell.cons(i, 1s);
1s.print();

Figure 3.2: Java listing for a simple cons-cell class

49

/4 class metadata
mainclass(class(0)).

class(class(0), ’Cell’).
publicClass(class(0)).
concreteClass(class(0)).

% class(4) is java.lang.Object (omitted here)
immedExtends (class(0), class(4)).

Figure 3.3: DIMPLE" metadata for the Cell class

bytecode at offset 20 in 1length () will return whatever int is atop the stack
when it is executed. A brief examination of this method reveals that two state-
ments may execute before the ireturn: the goto at offset 8, in which case the
constant o is atop the stack (from offset 7); or the iadd at offset 19, in which
case the sum of 1 (from offset 11) and the result of invoking length () on this
cell’s cdr (from offsets 12, 13, and 16) is atop the stack.

Intermediate representations aim to simplify low-level representations by
eliminating implementation details. In the case of bytecode, details like the
constant pool and the value stack may make a Java virtual machine simpler to
implement, but they make bytecode programs more cumbersome to analyze.
The DIMPLE" representation makes explicit many details about bytecode and
about program structure and is intended to be, as much as is practical, locally
coherent, meaning that individual statements should make some sense to a
human reader even out of context.

The pIMPLE" representation of a method body begins by indicating that
the method has been seen by the biIMPLE™ front-end and giving a table of its
local variables, as in the cons(int, Cell) method (which corresponds to
method (11316)):

analyzed(method(11316)).

local(local(34473), method(11316), primtype(’int’)).
local(local(34474), method(11316), reftype(’Cell’)).
local(local(34475), method(11316), reftype(’Cell’)).

The analyzed/1 clause indicates that the front-end has processed the
method numbered 11316; this is important because it allows user analyses to

50

/4 field declarations

field_decl(field(5221), ’car’, primtype(’int’), ’Cell.car’,
class(0), private, instance).

field_decl(field(5222), ’cdr’, reftype(’Cell’), ’Cell.cdr’,
class(0), private, instance).

/4 method declarations

method_decl (method(0), ’<Cell: main([Ljava/lang/String;)V>’,
class(0), subsig(2823), public, static, [’concrete’]).

param_type (method(0), O, arraytype(reftype(’java.lang.String’), 1)).

return_type (method(0), type(void)).

method_decl (method(11313), ’<Cell: <init>(I)V>’, class(0),
subsig(220), public, instance, [’concrete’, ’ctor’]).
param_type (method(11313), 0, primtype(’int’)).

method_decl(method(11314), ’<Cell: car()I>’, class(0),
subsig(5171), public, instance, [’concrete’]).
return_type (method(11314), primtype(’int’)).

method_decl(method(11315), ’<Cell: cdr()LCell;>’, class(0),
subsig(5172), public, instance, [’concrete’]).
return_type (method(11315), reftype(’Cell’)).

method_decl(method(11316), ’<Cell: cons(ILCell;)LCell;>’,

class(0), subsig(5173), public, static, [’concrete’]).
param_type(method(11316), 0, primtype(’int’)).
param_type(method(11316), 1, reftype(’Cell’)).
return_type (method(11316), reftype(’Cell’)).

method_decl (method(11317), ’<Cell: length()I>’, class(0),
subsig(98), public, instance, [’concrete’]).
return_type (method(11317), primtype(’int’)).

method_decl(method(11318), ’<Cell: print()V>’, class(0),
subsig(5174), public, instance, [’concrete’]).
return_type (method(11318), type(void)).

Figure 3.4: DIMPLE ™" structures representing field and method declarations for
Cell

51

public static Cell cons(int, Cell);

Code:

0: new #4; //class Cell

3: dup

4: iload_O

5: invokespecial #5; //Method "<init>":(I)V
8 astore_2

9: aload_2

10: aload_1

11: putfield #3; //Field cdr:LCell;

14: aload_2

15: areturn

public int length();

Code:

0: aload_O

1: getfield #3; //Field cdr:LCell;
4: ifnonnull 11

7: icomnst_1

8 goto 20

11: icomst_1

12: aload_O

13: getfield #3; //Field cdr:LCell;
16: invokevirtual #6; //Method length: (I
19: iadd

20: ireturn

Figure 3.5: Java bytecodes for cons(int, Cell) and length() methods

52

make conservative assumptions in the face of open programs; all methods that
may be transitively referenced by a program have corresponding entities in the
methods domain, but analyzed/1 will only hold for those whose bodies have
been processed by the front-end.

The local/3 clauses essentially represent declarations of local variables:
these associate entites in the locals domain with the method that contains them
and their types. Locals may correspond to formals or explicit local variables in
the Java source, but they may also correspond to temporaries that only exist
as an artifact of compiling to bytecode. Since temporaries do not have names
and Java class files do not necessarily include the names even for declared local
variables, DIMPLE" does not include names for locals by default. (However, the
DIMPLE " front-end features an option to associate local-domain entities with
variable names, if these are available as debugging information in the input
bytecodes.)

The next part of a DIMPLE™ representation of a method body is a set of
clauses that relate particular entities in the program counter domain (unit/1;
the unit parlance is borrowed from Jimple) to bytecode offsets into a method:
stmt_offset(unit (883), offset(method(11316), 0)).
stmt_offset(unit (884), offset(method(11316), 5)).

stmt_offset(unit(885), offset(method(11316), 11)).
stmt_offset(unit(886), offset(method(11316), 15)).

This set of clauses shows that four statements in the DIMPLE™ representation
of cons(int, Cell) correspond to bytecode statements and they correspond
most closely to the bytecode statements at offsets o (an object allocation), 5 (a
constructor invocation), 11 (a heap store), and 15 (returning a reference). By
making these offsets are available to analysis developers, DIMPLE™ facilitates
communicating analysis results back to class files as bytecode annotations.

The pIMPLE ™ representation of the method body is terser than the bytecode
representation because it does not need to encode expressions as statements.
However, the DIMPLE™ representation of the method also includes statements
that are implicit in bytecode; specifically, statements corresponding to the
method preamble:
containsStmt (method(11316), unit(881)).
fallsThrough(unit(881)).

stmt (unit(881), identityStmt(local(local(34473), method(11316),
primtype(’int’)), parameterRef (method(11316), 0))).

containsStmt (method(11316), unit(882)).
fallsThrough(unit(882)).

53

stmt (unit(882), identityStmt(local(local(34474), method(11316),
reftype(’Cell’)), parameterRef(method(11316), 1))).

The six clauses above represent two statements in the preamble of cons (int,
Cell). The containsStmt/2 clauses relate program counters to the methods
that contain them. Since there is no branching in method preambles, each
of these methods “falls through” and transfers control to the next statement
(by convention, the next statement is the one with a program counter that is
the successor of the current statement). Both of these statements, at program
counters 881 and 882, are “identity statements” An identity statement is a
special kind of assignment that sets up locals whose values come from outside
the method scope. In this case, locals 34473 and 34474 corresponds to the first
and second formals of the method.

We shall now examine the statements that correspond to the actual method
body, beginning with the allocation from the bytecode at offset o:

containsStmt (method(11316), unit(883)).
fallsThrough(unit(883)).
stmt (unit (883),
assignStmt (local(local (34475), method(11316), reftype(’Cell’)),
newExpr(’Cell.java:13’, reftype(’Cell’)))).

The preceding statement assigns the result of an object allocation to local
34475 (which corresponds to hd in the original Java source). The newExpr/2
structure represents allocation and has two constituents: an atom that rep-
resents the allocation site if line number information is available (it is in this
example), and a structure representing the type of the allocated object. The
new operator in the Java language combines object allocation, initialization,
and constructor invocation (Gosling et al. 2000). In contrast, DIMPLE™, like
Java bytecode, separates allocation and initialization from constructor invo-
cation. The next statement in cons (int, Cell) models the invokespecial
bytecode that corresponds to constructor invocation:

containsStmt (method(11316), unit(884)).
unitMaySelect (unit(884), method(11313)).
unitActual (unit(884), this,
local(local(34475), method(11316), reftype(’Cell’))).
unitActual (unit(884), O,
local(local(34473), method(11316), primtype(’int’))).
fallsThrough(unit(884)).
stmt (unit (884), invokeStmt(speciallnvokeExpr (method(11313),
[local(local(34473), method(11316), primtype(’int’))]1))).

54

This sequence of clauses is rather more interesting than those for the simple
statements we have already examined. Note the unitMaySelect/2 relation,
which encodes a conservative approximation of the program’s call graph by
relating the program counters of invocation statements to the identifiers of
method bodies that their invocations may select. (Because constructors are
dispatched statically in Java, a constructor invocation statement will select
exactly one method body; invocation sites that use virtual dispatch may have
more than one associated may-select relation.) The unitActual/3 indicates
actuals for a particular invocation site; in this case, local 34475 is passed as the
this parameter (that is, the object being constructed), and local 34473 is passed
as the first explicit actual.

Now consider the statement itself, as contained in the stmt/2 structure.
An “invocation statement” corresponds to an invocation with no return value
or whose return value is ignored. Since constructors do not return values,
all constructor invocations appear within invokeStmt/1 clauses. (Invocation
expressions with return values typically appear in assignment statements.)
Finally, note that the invocation expression includes the explicit actual pa-
rameters in a Prolog list. Although the actuals are already represented by
the unitActual/3 relations, this redundancy increases the local coherence of
assignment statement expressions.

The next statement in the method body assigns a local reference to a Cell
to the Cell. cdr field of the newly-created object:

containsStmt (method(11316), unit(885)).
fallsThrough(unit(885)) .
stmt (unit (885),
assignStmt (
instanceFieldRef (local(local(34475), method(11316), reftype(’Cell’)),
field(5222)),
local(local(34474), method(11316), reftype(’Cell’)))).

The instance field reference contains a local variable (in this case, local
34475) and a field identifier. The local variable corresponds to the base object
containing the field; the field identifier uniquely identifies a field by its type,
name, and declaring class (the latter two correspond to v and k from Defini-
tion 2.3). We can identify field 5222 by consulting Figure 3.4, which shows
that 5222 is ascribed to the cdr field declared in Cell. By the rules given in
3.7, we see that an assignment like this one — with a field reference on the
left-hand-side and a local on the right-hand-side — corresponds to a heap store.

The final statement in cons (int, Cell) returns a reference to the newly-

55

allocated cons cell object. Note that return statements do not fall through:

containsStmt (method(11316), unit(886)).
stmt (unit (886),
returnStmt (local (local (34475), method(11316), reftype(’Cell’)))).

3.4 THE DIMPLE" ANALYSIS LANGUAGE

The pimMPLE" analysis language consists of two parts: a statement processing
language and a rule definition language. The statement processing language
describes statement processing routines, which convert from the pIMPLE™ IR
to an analysis-specific intermediate representation. Put another way, statement
processing routines are subprograms that decide what derived relations should
hold given the presence of certain program statements. The rule definition
language facilitates descriptions of analysis rules in terms of these derived
relations; analysis rules in the rule definition language are translated into code
that will run on a particular query engine.

A pimPLE" user will go through several steps when developing a new
analysis:

. Developing Prolog procedures to be used before the statement processing
routine (as an additional preprocessor on the program text), or during the
statement processing routine.

. Specifying statement processing rules, indicating that certain derived relations
should be added to the Prolog database if their free variables can be instantiated
in some condition. DIMPLE" will then automatically generate a statement
processing routine based on these rules.

. Specifying analysis rules. These rules define analysis result relations as func-
tions of derived relations. The DIMPLE " code generator automatically translates
these into programs that run in the context of a particular query engine and
generate exhaustive solutions to analysis problems.

Because the DIMPLE " analysis language is based on logic programming, it
allows users to develop analyses in an essentially declarative style that is very
similar to the formal definitions of analysis algorithms used in the literature.
Unlike other tools for program analysis that support declarative abstractions,
DIMPLE" also allows users to implement statement processing routines by
providing declarative specifications for the translation from the pIMPLE™ IR of

56

an input program to an analysis-specific intermediate representation. In fact,
the pIMPLE™ statement processing language supports unrestricted Prolog in
user-defined helper rules; consequently, Prolog’s extralogical features, such as
the cut, assignment, and assertion and retraction of relations and rules, are
available to statement processing routines.

The pIMPLE" system supports generating analysis code that will run on
multiple query engines with different capabilities and performance character-
istics. In so doing, it allows users to trade off flexibility and expressivity for
performance.

The built-in query engine is based on tabled Prolog; the tabled execution
model allows for expressive analysis rules. In particular, tabled predicates may
contain function symbols and — more generally — arbitrary finite structures.
However, this flexibility comes at a price: if tabled search requires traversing
a graph with very large strongly-connected components, it will use a great
deal of memory, because subgoal solutions are stored at every node in the
search space. Furthermore, the time complexity of top-down resolution with
tabling depends on several implementation details and is hard to predict. As a
consequence, tabled resolution may not be able to generate solutions to certain
analyses queries on large inputs.

Different query engines based on different solvers can provide different
performance characteristics, at the cost of some expressive power. A Datalog-
based solver might exhibit much better memory performance than the tabled
Prolog solver, due to bottom-up resolution; furthermore, there exist efficient
methods for implementing Datalog queries, such as that presented by Liu
and Stoller (2003), that also provide time and space complexity guarantees.
However, a Datalog solver cannot handle the same kinds of relations and queries
that a tabled Prolog system can: Datalog clauses cannot contain function
symbols or lists. (Datalog also cannot treat Prolog’s extralogical features, but
DIMPLE " only supports these in statement processing routines, so they are not
an issue for the query engine.) Liu et al. (1998) and Liu (2000) showed that it is
possible to incrementally compute recursive rules with function symbols in
rule heads; Liu and Stoller (2003) argue that it is possible to use this approach
to transform some such programs to Datalog programs, but do not present an
implementation.

57

The statement processing language

Once an analysis designer has decided how to map concrete program state-
ments to elements of abstract domains, it is necessary to develop a routine
to extract program statements of interest. The DIMPLE™ statement processing
language automatically generates such a statement processing routine given
a set of rules describing when particular statements are interesting. These
rules may simply refer to DIMPLE™" IR statements: for example, asserting that
a relation holds between two local variables when an assignment between
them occurs in the program text. DIMPLE" statement processing rules may
also refer to types and methods: for example, we may only be interested in
variables of certain types, or statements that execute in particular methods. In
fact, piMPLE™ affords analysis designers the opportunity to develop arbitrarily
complex statement processing rules, since the statement processing routine
may use unrestricted Prolog code and has access to a full representation of
the program under analysis, including a class hierarchy and conservative call
graph approximation.

Statement processing rules take the form Head <-- Body. Head must be
a functor with at least one variable constituent; this variable must appear in
Body as well. Body may contain relations about statements (e.g., stmt/2) as
well as relations about the types of expressions within statements, relations
about the class hierarchy, relations about a conservative method call graph,
and user-defined relations. The default DIMPLE™ statement processing routine
will exhaustively identify where every Body relation holds, adding each unique
corresponding Head to the database exactly once. The statement processing
rules are executed in order, so relations added to the database by the head
of some rule r are available to the body of every statement processing rule
executed after r. The statement processing routine also keeps track of why
each derived relation holds. As a result, an analysis designer can use a simple
query to determine which source program statements and conditions led to a
particular relation.

The case studies in sections 3.6 and 3.7 include representative examples of
the statement processing language.

The rule definition language

As we have seen, DIMPLE s statement processing routine interprets the user’s
specifications. As it runs, the statement processing routine generates an

58

analysis-specific intermediate representation: it populates the database with
relations describing the state of the program as is relevant to the current analy-
sis. Statement processing rules act like filters over the program database. The
statement processing routine finds all solutions to each, in order, but each rule
is only solved for once.

DIMPLE " represents analysis rules in a similar way to preprocessor rules
(analysis rules use the <== operator instead of <--), but the meaning of analysis
rules is very different. The DIMPLE™ code generator produces executable code
for a particular query engine from analysis rules. Therefore, analysis rules
are like procedures that may call each other. (Statement processing rules, on
the other hand, may rely on the results of other Prolog procedures, DIMPLE "
internal rules, or relations generated by statement processing rules that have
already executed.)

Many specialized analyses and transformations depend on more general
analyses. For example, analyses to determine whether or not an object is
stack-allocable typically either incorporate or rely upon a points-to analysis.
Other examples include constant propagation, partial evaluation, and some
schemes for type inference — all of which depend on a reaching definitions
analysis. Because DIMPLE" analyses and programs are stored in the same
format, it is extremely straightforward to annotate programs with analysis
results and serialize analysis results for use in later sessions. A user might
develop an analysis, query for an exhaustive solution to the analysis rules, and
save the relations derived from the analysis results to the database for use by
the statement processing rules of more specialized analyses.

The case studies in sections 3.6 and 3.7 include representative examples of
the rule definition language.

3.5 QUERY ENGINES

There are many excellent declarative frameworks that are well-suited to solving
program analysis problems, but each presents different tradeoffs between
expressivity and performance. DIMPLE" is designed for flexibility and supports
interfacing with multiple, pluggable query engines. A DIMPLE" query engine
consists of a solver, an interface to that solver, and Prolog procedures and
support code to translate from rules in the rule definition language. We have
implemented two query engines: one based on tabled Prolog, and one that
uses the BDDBDDB system (Whaley and Lam 2004) as an external solver.

59

The tabled execution engine

Tabled evaluation provides several benefits. Many sorts of procedures enjoy im-
proved execution efficiency when evaluated with tabling. Furthermore, tabled
evaluation admits natural, declarative definitions of left-recursive procedures.
However, these benefits come at two costs: a memory cost and a development
cost.

In many cases, it is possible to address the memory cost. Tables for proce-
dures may take up a great deal of memory, and the balance between space and
execution time may not justify tabling certain predicates. As a result, DIMPLE™
allows users to designate certain analysis rules as untabled; the code generator
will simply generate standard Prolog rules for these.

The development cost presents a rather trickier problem. Typically, it is
not possible to trace a tabled procedure, since it will be evaluated at most once
for a given tuple of arguments. For many applications, the tradeoff between
ease of debugging and execution time would be acceptable. However, we are
interested in enabling researchers to prototype new analyses rapidly. As part
of this process, a researcher may be interested in determining precisely why a
particular spurious analysis result holds.

The code generator for the tabled query engine solves this problem by
generating two versions of rules: standard versions, which are tabled and ex-
ecute normally, and tracing versions, which are not tabled and can execute
in a metainterpreter that produces a rule trace. Given a standard rule R, we
generate the tracing version R’ as follows:

. Give R’ a new name that does not belong to any extant procedures; create a
relation in the database indicating that the name for R’ is the tracing version
of the rule R.

. Make a copy of R’s body; this will become the body for R’. Map every call to a
non-recursive procedure in this new body with a call to the tracing version of
that procedure. Note that we do not generate tracing versions of relations gen-
erated by the statement processing routine. The code generator only replaces
calls to non-recursive procedures in order to ensure that the metainterpreter
will terminate when asked to explain any terminating relation.

Given these tracing versions, a user can drill-down to fully explain any
individual analysis result. As an example, consider a user who wishes to explain
why the relation v_pt holds with arguments 12 and 45. When the user asks

60

DIMPLE" to explain why v_pt (12,45) holds, the metainterpreter will consult
the tracing versions of the various clauses for v_pt. Assume that, for this
example, the relevant clause of v_pt is recursive and depends on an assign/2
relation generated by the statement processing routine: namely,

v_pt(Ref,0bj) <== assign(Ref,Int), v_pt(Int,0bj).

The generated tracing version of this clause would be very similar, except that it
would not be declared as a tabled procedure. If there were calls to non-recursive
analysis rules inside the body of this clause, then they would be replaced with
calls to tracing versions. However, the call to assign/2 would not change,
since assign/2 is a fact generated by the statement processing routine; the
recursive call to v_pt/2 would not change, since the code generator does not
replace calls to recursive rules. Therefore, the tracing version of this clause, in
standard Prolog syntax, would consist of:

dimpleTRACE_v_pt (Ref,0bj) :- assign(Ref,Int), v_pt(Int,0bj).

In this example, the metainterpreter might show that assign(Ref,Int) holds
with Ref = 12 and Int = 14; it will then consult the table for v_pt/2 and see
that v_pt (Int,0bj) holds with Int = 14 and Obj = 45. Therefore, the user
is able to see which rule led to the (perhaps spurious) result; if one wishes to
trace further, e.g., to determine why v_pt (14,45) holds, one may iteratively
query the metainterpreter for more details.

A BDD-based query engine

In tabled execution, partial solutions are stored for every subgoal, which can
dramatically increase memory consumption when finding a solution to a large,
interdependent system of rules. Disabling tabling on these predicates is some-
times an unattractive option, since doing so changes the semantics of solution
search and may introduce non-termination. Therefore, some analysis problems
— especially those that involve exploring very large search spaces or those
with significant redundancies — may benefit from a more compact represen-
tation. We will begin with some background on such a representation, called
ordered binary decision diagrams, before discussing a DIMPLE™ query engine
that exploits this representation by using an external solver.

Ordered binary decision diagrams,* due to Bryant (1992), represent boolean

3All of the binary decision diagrams we will discuss in this section are reduced ordered
binary decision diagrams; we will refer to them as BDDs for simplicity.

61

X, X: X, Result
o o0 o 0

o o 1 0

o 1 o)

(6] 1 1 1

1 0 o o

1 o 1 1

1 1 o 1

1 1 1 1

Figure 3.6: Truth table for the ternary majority function

fogial
goas

FIlFI||F

T T T

Figure 3.7: Decision tree for the ternary majority function

functions compactly as directed acyclic graphs. Figure 3.6 shows the truth
table for the ternary majority function, which has the value shared by at least
two of its arguments. Figure 3.7 shows a decision-tree representation of the
ternary majority function, in which variables are nodes, each of which has a
“false” child (denoted with a dashed line) and a “true” child (with a solid line).
It should be clear that either of these explicit representations requires on the
order of 2™ space, where n is the number of variables in the function.

The BDD representation exploits redundancies in the decision tree and
generates a more compact graph representation in which the following are
eliminated:

1. redundant leaf nodes, for example, every “true” leaf is replaced by one canonical
“true” leaf, and likewise with “false;”

2. redundant roots, that is, those who correspond to the same variable and whose

62

Figure 3.8: Reduced ordered binary decision diagram for the ternary majority
function

inputs and outputs are the same; and

. redundant tests, that is, those whose truth value does not alter the result of the
function.

For functions of few variables, it suffices to repeatedly remove these redun-
dancies until quiescence; this will result in a smaller representation, such as
that in Figure 3.8, which represents the ternary majority function much more
compactly than the decision tree or truth table. For larger functions, such an
iterative approach is intractable and must be replaced with symbolic manipu-
lation.

We should note that the variable ordering chosen for a particular BbD
can dramatically impact the size of the fully reduced diagram; informally, the
ordering can expose or hide redundancies in the function’s result space. Bollig
and Wegener (1996) showed that algorithmically choosing a “good or optimal”
variable ordering for a BDD is NP-complete; since so doing can have a profound
impact on the efficiency of Boolean manipulations, it is a nontrivial concern
for BDD users. Furthermore, since BDDs are restricted to representing Boolean
functions, a suitable BDD-based encoding of an analysis problem may not
be immediately apparent. Finally, BDDs may not enable efficient symbolic
manipulation of certain Boolean functions; as an example, Bryant (1992) shows
that operations on a BDD representing integer multiplication are exponential
in the best and worst cases. Nevertheless, the BDD representation has proven
greatly beneficial to many problem domains, including program analysis.*

4Representative program analysis applications of BDDs include those of Marriott and
Sendergaard (1993); Corbett (1994); Lagoon and Stuckey (2002); Berndl et al. (2003); Lhotak

63

The BDDBDDB system (Whaley and Lam 2004) implements Datalog using
BDDs. While Datalog is strictly less expressive than tabled Prolog, it is ex-
pressive enough for a wide range of analysis problems, as many groups have
demonstrated. (We cover representative applications in Section 3.8.) We have
developed a DIMPLE' query engine that employs BDDBDDB as an external
solver; in cases where the DIMPLE™ rules for an analysis can be represented as
a legal Datalog program, it translates the analysis and generates a set of rules
for BDDBDDB to solve.

BDDBDDB represents a relation with at most 2* elements as a k-ary Boolean
function. As a consequence, one must place all entities from input relations
(i.e. the analysis-specific IR) into fixed-size domains; one must also accurately
estimate the upper bound on the size of the output relations. (If the size
estimated for output domains is too small, the queries will fail; if it is too large,
it may not be possible to issue complex queries.) BDDBDDB supports machine
learning-based heuristics for selecting variable orderings, which relieves the
user from the burden of choosing a good ordering, but may inhibit casual
experimentation with new analysis rules. BDDBDDB does, however, feature
support for debugging Datalog programs and inspecting analysis results.

3.6 CASE STUDY: ANDERSEN’S ANALYSIS

Consider a family of fundamental program analyses: points-to analyses, which
provide answers to the question: “Which (abstract) memory locations might
this reference-valued variable refer to at runtime?” Andersen’s analysis (1994)
is a points-to analysis; it provides a reasonable tradeoff between precision
and worst-case execution time for many applications. Andersen’s analysis also
enjoys an intuitive, succinct specification in terms of constraints on a points-to
graph: one could easily describe it to an implementer by writing the most
important analysis rules on a cocktail napkin. However, producing a good
imperative program that implements Andersen’s analysis is a rather difficult
task — early implementations were quite slow and did not scale. The first truly
scalable implementation of an Andersen-style analysis, due to Heintze and
Tardieu (2001), was reported seven years after Andersen’s dissertation was
published.

In this section, we present a DIMPLE " implementation of Andersen’s points-

and Hendren (2004); Whaley and Lam (2004); Lam et al. (2005); Naik et al. (2006); Naik and
Aiken (2007).

64

to analysis for Java.” We have adapted the analysis rules from the BDDBDDB
implementation of a context-insensitive subset-based points-to analysis, due
to Whaley and Lam (2004). We developed the statement processing rules in
order to translate from DIMPLE™ IR statements to the analysis-specificir used
by Whaley and Lam’s specification.

Andersen’s analysis is a flow- and context-insensitive, inclusion-based points-
to analysis. This means that subprograms are treated as sets of statements
(rather than as graphs of statements); that analysis results for a particular
method are merged among all call sites of that method; and that a variable may
refer to a subset of the locations that another variable refers to.°

We defined statement processing rules to extract relevant relations from the
IR database. (Only a subset of all the DIMPLE™ IR relations affect points-to in-
formation.) Figures 3.9 and 3.10 shows how we encoded these in preprocessing
the program text:

. Object allocation statements create a new abstract object, which we name by
the program counter of the allocation site. Object allocation statements imply
an immediate points-to (pt/2) relation between the local variable receiving
the object reference and the newly-allocated object.

. Assignment statements (including heap and array loads and stores) indicate
that the variable or location on the left-hand side of the assignment may refer to
a superset of the locations that the right-hand side of the assignment may refer
to. Standard assignments between locals imply an assign/2 relation; loads
and stores of instance fields imply 1oad/3 and store/3 relations. (We treat
array accesses — not shown in the figure — as field accesses to a distinguished
field name and static fields as global variables.)

. Method invocations indicate that the local variables corresponding to formal
parameters (indicated by formal/3 relations) must refer to a superset of all ab-
stract objects referred to by variables passed as actual parameters (indicated by
actual/3 relations). (Recall that we use a precomputed conservative approx-

5 Andersen’s analysis was initially designed for C; several groups (Berndl et al. 2003; Sridha-
ran et al. 2005; Whaley and Lam 2004; Rountev et al. 2001) have refined it to take advantage of
Java’s type system and lack of unrestricted pointers; these various extensions are fundamentally
similar.

6Readers who are interested in more information on categories of points-to analyses should
refer to Hind and Pioli (2000) and Hind (2001) for a thorough overview of the field.

65

/* newly-allocated objects */
pt(La,Id) <—-
stmt (unit (Id), assignStmt(local(local(La),Ma,Ta)), newExpr(Loc,Type)).

/* assignments between locals */

assign(La,Lb) <--
stmt (_, assignStmt(local(local(La),Ma,Ta), local(local(Lb),Mb,Tb))),
reference_type(Ta).

/* static fields (i.e., globals) */
s_load(La,Field) <--
stmt (unit(Id), assignStmt(local(local(lLa),Ma,Ta),
staticFieldRef (Field))), reference_type(Ta).
s_store(Field, La) <—-
stmt (unit (Id), assignStmt(staticFieldRef (Field),
local(local(La),Ma,Ta))), reference_type(Ta).

/* instance fields */

/ La =Lb.F
load(La,F,Lb) <-—-
stmt (unit(Id), assignStmt(local(local(lLa),Ma,Ta),
instanceFieldRef (local(local(Lb) ,Mb,Tb), F))),
reference_type(Ta).

/A La.F = Lb
store(La,F,Lb) <--
stmt (unit(Id), assignStmt(instanceFieldRef (local(local(La),Ma,Ta), F),
local(local(Lb) ,Mb,Tb))),
reference_type(Tb).

/* phi functions (SSA only) */

has_local(LHS, [value_unit(local(local(LHS),_,_),_)|Vunits]).

has_local(LHS, [_|Vunits]) :- has_local(LHS, Vunits).
info(X) <-- X = phi_assignments.
assign(La, Lb) <--

stmt (_, assignStmt(local(local(la),_,_),
phiExpr([HIT]))), has_local(Lb, [HITI]).

Figure 3.9: Andersen’s analysis: select statement processing rules (rules treating
arrays and exceptions are omitted)

66

/* formal and actual parameters */

formal(La, Index, Method) <--
stmt (unit(Id), identityStmt(local(local(La),Ma,Ta),
parameterRef (Method, Index))),
reference_type(Ta).

formal(La, this, Method) <--
stmt (unit(Id), identityStmt(local(local(La),Ma,Ta),
thisRef (Method, Type))),
reference_type(Ta).

actual(La, Index, Method) <--
unitActual(Callsite, Index, local(local(lLa), Ma, Ta)),
unitMaySelect(Callsite, Method), reference_type(Ta).

/* return values */

ret_caller(La, Method) <--
stmt (unit (Id), assignStmt(local(local(La),Ma,Ta), X)), invocation(X,_),
unitMaySelect(Id, Method), reference_type(Ta).

ret_callee(La, Method) <-- stmt(unit(Id), returnStmt(local(local(La),Ma,Ta))),
reference_type(Ta), containsStmt(method(Method), unit(Id)).

Figure 3.10: Andersen’s analysis: statement processing rules used by interpro-
cedural transfer functions

imation of the dynamic call graph; the unitMaySelect/2 relation indicates
that a particular program counter may invoke a particular method.)

Let us now consider the actual analysis rules. Andersen’s analysis is perhaps
simpler to understand if we consider it as a graph problem. An exhaustive
solution to the points-to question, as given by the set of all tuples under the
v_pt/2relation, is simply the transitive closure of the assignment relation from
abstract heap objects Id to reference variables Ref. With this in mind, we can
consider the rules, as shown in Figure 3.11:

. v_pt(Ref,Id) holds when Ref immediately points to Id.

. v_pt(Ref,Id) holds when Ref has received a reference from some other vari-
able Refl, and v_pt (RefI,Id) holds.

67

% case 1:
v_pt(Ref,Id) <== pt(Ref,Id).

/ case 2:
v_pt(Ref,Id) <== assign(Ref, RefI), v_pt(RefI, Id).

/ case 3:
v_pt(Ref, Id) <== s_load(Ref, F), s_store(F, RefI), v_pt(RefI, Id).

7 case 4:
v_pt(Ref, Id) <== formal(Ref, I, M), actual(RefI, I, M), v_pt(RefI, Id).

/ case 5:
h_pt(0bj1, F, 0bj2) <==
store(Refl, F, Ref2), v_pt(Refl, Objl), v_pt(Ref2, 0bj2).

/ case 6:
v_pt(Ref, Id) <==
load(Ref, F, Refl), v_pt(Refl, Id1l), h_pt(Idi, F, Id).

7 case 7:
v_pt(Ref, Id) <==
ret_caller(Ref, Method), ret_callee(RefI, Method), v_pt(RefI, Id).

Figure 3.11: Andersen’s analysis: complete analysis rules

. v_pt(Ref,Id) holds when Ref may have been loaded from a static field F, F
may have had some reference RefI stored to it, and v_pt (RefI,Id) holds.

. v_pt (Ref,Id) holds when Ref is formal parameter I of some method M, Refl
is actual parameter I of a call site that may invoke M, and v_pt (RefI,Id)
holds.

. h_pt(0Obj1,F,0bj2) holds when some field F of an abstract heap object Obj1
may refer to the abstract heap object Objz.

. v_pt(Ref,Id) holds when Ref may have been loaded from a field that has had
Id stored to it.

. v_pt(Ref,Id) holds when Ref may receive its value from a method that re-
turns some RefI such that v_pt (RefI,Id) holds.

68

Benchmark Memory Run cpu

antlr 564M 7.89 7.90
bloat — — —

eclipse 1215M 18.55 21.89
hsqldb 2370M 37.37 65.41
jython 2584M 42.22 66.99
luindex 468M 7.46 7.47
lusearch 532M 8.05 8.06
pmd 790MB 11.27 11.27

Table 3.11: Performance results for Andersen’s analysis with the tabled query
engine. (bloat did not complete.)

Table 3.11 shows the performance results for executing Andersen’s analysis
on our subset of the DaCapo benchmarks, using piMpPLE™ and the tabled execu-
tion engine. “Memory” indicates the total memory requirements for finding an
exhaustive solution to the analysis problem. We report two timings: “run time”
indicates query processing time exclusive of time spent managing memory
(e.g. garbage collections and handling stack, heap, or trail space overflows),
while “cpu time” indicates total execution time including memory management
time. All timings include the time to load, parse, and index the analysis-specific
intermediate representation.

3.7 CASE STUDY: EFFECTS INFERENCE

In this section, we present a simple effects inference analysis to aid program
understanding. In so doing, we show an example of using DIMPLE " to extend an
existing analysis. We also demonstrate how the interactive nature of biMPLE™
makes it easy to validate intuitions and apply these to improving an analysis.
Before we introduce our particular analysis, we shall discuss the problem in
more detail.

Standard type systems characterize the ranges of values that expressions
may produce and that variables may assume. Effect systems (Lucassen and
Gifford 1988) extend type systems to also characterize the computational effects
(e.g., reads or writes to shared state) of expressions, statements, and methods.
Thus, a type system might tell us that method foo takes an int parameter

69

public class Point {
private float x, y;

public Point(float x, float y) {
this.x = x; this.y = y;

}
public void setX(float x) { this.x = x; }
public void setY(float y) { this.y =y; }

public float getX() { return this.x; }
public float getY() { return this.y; }

public void translate(float dx, float dy) {
this.x = this.x + dx;
this.y = this.y + dy;

}

}

Figure 3.12: A simple Point class

and returns a reference to Object, but an effect system would also tell us
that method foo may write values in regions X and Y and read values from
regions X and Z. (A region is simply a subset of the heap.) Just as a type system
may use explicit type annotations (as in Java or C) or infer types for variables
and expressions (as in ML or Haskell), effect systems may either require user
annotations of effecting behavior or infer this information.

There are many applications of effects inference analysis. Several notable
examples include finding expression scheduling constraints (as in Lucassen
and Gifford); automatically providing annotations for a model checker or
specification language (Salcianu and Rinard); and, most commonly, improving
region-based memory management (Tofte and Talpin 1997), in which object
lifetimes are inferred at compile-time to enable a stack discipline for dynamic
allocations, so that an entire region of objects may be deallocated at once. We
present a more sophisticated effects inference analysis, designed to identify
externally- pure and read-only methods and quiescing fields, in Chapter 4. The
analysis we present in this section is designed to aid program understanding
and debugging, so it does not calculate region lifetimes; rather, it answers
the question: given some method X, which abstract locations may X read or
write? We shall use the Point class declared in Figure 3.12 as an example as
we introduce our analysis. Before we do so, we shall review some relevant Java
features.

70

Side effects in Java

Java enforces a strict divide between heap data and stack data. In particular,
Java supports references instead of unrestricted pointers. References may only
refer to heap locations (objects or arrays); it is not possible to create a reference
to a stack value.

Parameters are passed by value in Java. Therefore, the only data that can be
shared between methods — the sort of data that we are interested in inferring
effects on — are heap objects. The only way to access or modify heap data (thus,
shared state) is via an array element reference or an object field reference.

Because Java is a typed language, it is not possible to refer to an object of
type C via a reference of type D, where D is not a supertype of C. Doing so
will result in either a compile-time or run-time error. At the I1r (or bytecode)
level, all field accesses are to fully-qualified names, including a field name
and the name of its declaring class. Therefore, we can examine the IR for
the Point . setX method and determine that it may only modify one abstract
location: the Point.x field of some object that is an instance of Point or
some subclass thereof. In the language of effect systems, we could say that
Point.setX writes into the region Point . x.

We could devise a very basic effects inference for Java by preprocessing a
program database to reject everything except heap reads and writes, method
invocations, and the conservative call graph. We would write our analysis
to indicate that a heap read had a READ effect on the field it accessed, that a
heap write had a WrITE effect on the field that it accessed, and that a method
invocation statement had the union of all effecting statements from every
method that might be dispatched from that call site. Such a basic analysis would
use Java’s type system to provide extremely coarse memory disambiguation. Its
results would be sound but perhaps not very useful — there would be no way
to distinguish between writes to some field C.F through references X and Y,
even if it were possible to statically guarantee that X and Y did not refer to the
same object.

A simple effects inference analysis

We can develop a more precise analysis by building on the points-to analysis
from Section 3.6. Java’s type system provides an extremely coarse form of
memory disambiguation; we can use a points-to analysis to discriminate among
locations with finer granularity. We shall consider abstract objects to be regions.

71

public void foo() {
Point pt = new Point(0,0);
pt.translate(1,1);

Figure 3.13: foo exposes a shortcoming of the simple analysis

Therefore, an inferred effect will consist of READ or WRITE, an abstract object
(or the distinguished location global), and a field name. (We discuss but do
not show the pbiMPLE™ rules for the analysis we present in this section; many
are substantially similar to the rules for the improved analysis that we present
later in this section.)

This simple effects inference analysis proceeds as follows: First, it prepro-
cesses the input database, extracting statements of interest. For the purposes of
this analysis, we are exclusively interested in method invocations and reads and
writes to heap locations. The analysis rules define the reads/3 and writes/3
relations to describe side effects, as follows:

reads(PC, Loc, F) holds when: (1) the statement at program counter PC reads
from the instance field F from a reference R and v_pt (R, Loc) holds;’
or (2) Loc is the atom global, and the statement at program counter
PC reads the static field F; or (3) the statement at program counter
PC may invoke a method that contains some statement PC’ for which
reads(PC’, Loc, F) holds.

writes(PC, Loc, F) holds in analogous situations as does reads/3, except that
writes/3 holds when fields are written to instead of read from.

Andersen’s analysis is a better discriminator between memory locations
than is Java’s type system, but it is limited by its insensitivity to contexts. Recall
that Andersen’s analysis merges analysis results for every context in which a
method is invoked. (Here we construe “context” broadly to include call stack
strings and receiver objects.) Specifically, consider the foo method from Figure
3.13.

A novice Java programmer would correctly note that the scope of foo’s
side effects are confined to the object constructed in its first line. However,

7The rules treating array references are similar to those treating instance fields; thus, we
have omitted them here as we did in Section 3.6.

72

because the simple effects analysis is using Andersen’s analysis to disambiguate
between memory locations, it will not fare as well. Since foo only consists of
two method invocations (a constructor and translate), its READ and WRITE
sets are the unions of those sets for all of the methods it invokes. Because of
context-insensitivity, these sets may be very large. The constructor has WRITE
effects for the x and y fields of every object that may be referred to by this —
that is, every Point object that has been created with that constructor! The
translate method likewise has READ and WRITE effects for the x and y fields
of every object that is pointed to by a reference that has had the translate
method invoked on it.

Parameterizing on receiver objects

It seems plausible that the READ or WRITE sets of most instance methods will
contain primarily fields of the receiver object (i.e., this). Were this the case,
we could parameterize our analysis so that when we encountered an effect
involving this, instead of keeping track of all possible objects that might be
referenced by this, the READ and WRITE sets would merely record an effect
to this. Given this sort of parameterized analysis, for example, the WRITE
sets for Point . setX would include only the x field of this. When our analysis
encountered an invocation like pt.setX(y), it could then calculate which
objects pt might refer to, and generate WRITE sets for the method invocation
by instantiating this in the WRITE set for setX with each such object.

Of course, a plausible intuition doesn’t provide sufficient justification for
building and validating a new analysis, no matter how straightforward it is to
do so in a given framework. Fortunately, DIMPLE™ makes it easy to collect em-
pirical evidence for our intuitions: we may simply query the program database
to see if certain conditions obtain.

In order to do so, we define an isthis/1 predicate that holds when a
variable is a this reference — that is, when it refers exclusively to the receiver
object of the current method. (The DIMPLE™ IR generator attempts to minimize
the lifetimes of locals. Therefore, each method has one local variable that
corresponds to this and possibly several variables that alias that local.) Then,
we can use DIMPLE " to query the program text and determine whether our
intuition is correct; viz., most instance field accesses are to this instead of to
some other object.

For the benchmark programs we examined, this particular intuition hap-
pens to be correct. As a result, we know that it is probably worthwhile to

73

isthis(L) <-- formal(L,this,M).
isthis(L2) <--
formal (L,this,M),
assign(L2, L),
all(Source,assign(L2, Source),[L]).

receiver(Id, L) <--
unitActual(Id, this, local(local(L), _, _)).

/* globals */
read_global(Id, F) <--
stmt (unit(Id), assignStmt(local(_,_,_), staticFieldRef(F))).
/* instance fields */
read_effect(Id, this, F) <--
stmt (unit(Id), assignStmt(local(_,_,_),
instanceFieldRef (local(local(l),_,_), F))),
isthis(L).

read_effect(Id, L, F) <--
stmt (unit (Id), assignStmt(local(_,_,_),
instanceFieldRef (local(local(L),_,_), F))),
\+ isthis(L).

P -

/% invocations */
callgraph_edge(Id, Callee) <-- unitMaySelect(unit(Id), method(Callee)).

/* methods containing effecting statements */

in_method(Id, Method) <-- containsStmt(method(Method), unit(Id)),
(read_effect(Id, Lr, Fr) ; write_effect(Id, Lw, Fw)).

in_method(Id, Method) <-- containsStmt(method(Method), unit(Id)),
(read_global(Id, Fr) ; write_global(Id, Fw)).

method_contains(Method, Id) <--
in_method(Id, Method).

Figure 3.14: Select statement processing rules for parameterized effects infer-
ence (WRITE effect rules are omitted)

74

reads(Id, global, F) <==
read_global(Id, F).

reads(Id, 0, F) <==
read_effect(Id, L, F), v_pt(L, 0).

reads(Id, this, F) <==
read_effect(Id, this, F).

method_reads(Method, Loc, F) <==
method_contains (Method, Id), reads(Id, Loc, F).

reads(Id, Loc, F) <==
callgraph_edge(Id, Callee),
method_reads(Callee, this, F),
receiver(Id, V),
v_pt(V, Loc).

reads(Id, Loc, F) <==
callgraph_edge(Id, Callee),
method_reads(Callee, Loc, F),
Loc \= this.

Figure 3.15: Select analysis rules for parameterized effects inference (rules
treating WRITE effects are omitted)

develop a new analysis that generates parameterized summaries of effects in-
formation for methods; our analysis can then instantiate these summaries at
call sites to indicate that effects to this may only impact objects referenced
by the receiver at the call site. Figure 3.14 contains the statement processing
rules for this improved analysis, and Figure 3.15 contains the analysis rules.
(We omit rules related to WRITE effects in the analysis rules presented here, as
they are very similar to the rules for READ effects.)

3.8 RELATED WORK

Work related to the research we have reported here falls into two categories:
declarative representations of programs and program analysis specifications,
and techniques for efficiently solving declarative analysis queries. We discuss
notable results in each of these areas that are most relevant to our work. We

75

conclude by placing DIMPLE™ in context in the field and recapitulating its
contributions.

Declarative and relational frameworks for analysis

Dawson et al. (1996) argued that a general-purpose logic programming system
(the xsB Prolog system) could be used to evaluate declarative formulations
of program analysis problems. Their work demonstrated that the evaluation
model of tabled Prolog is suitable for answering program analysis queries
efficiently and completely. However, their evaluation was restricted to analyses
of functional and logic programs consisting of tens to hundreds of lines of code
and therefore did not evaluate the scalability of their techniques.

Codish et al. (1998) developed a system that used the tabled execution
capability of xsB for developing abstract interpretation-based analyses of logic
programs. Abstract interpreters can mirror the structure of concrete inter-
preters; therefore, their system enables extracting program analyses from fairly
straightforward Prolog metainterpreters. Due to their use of tabling, their
system is speed-competitive with specialized toolkits for analyzing logic pro-
grams.

Heintze (1992) demonstrated that many program properties could be faith-
fully approximated by sets — and, thus, that many program analyses could be
formulated as a system of set constraints. Heintze and Jaffar (1994) present
an overview of work in this area. Later in this section, we will describe some
notable tools based on this abstraction.

Reps (1998) demonstrated that many interprocedural dataflow analyses
could be formulated as reachability problems on context-free languages. Since
there is a well-understood correspondence between context-free languages and
declarative programs that recognize them, this approach implies declarative
formulations of a large class of analysis problems. Reps et al. (2005) later
generalized this approach to include analysis problems that could be specified
as reachability problems on weighted pushdown systems.

Several researchers have investigated the class of problems that are ex-
pressible as CFL-reachability problems. Notably, Melski and Reps (1997) gave
a general algorithm for translating from any CFL-reachability problem to a
set-constraint satisfaction problem. Later, Kodumal and Aiken (2004) provided
an algorithm for converting from Dyck CFLs, a subset of all context-free lan-
guages, to systems of set constraints; their algorithm is less general than the
Melski-Reps reduction, but produces more efficient implementations in the

76

special case of Dyck CFLs. Many static analysis problems can be expressed as
Dyck CFLs; a representative example is given by Sridharan et al. (2005), who
formulated demand-driven points-to analysis for Java with a Dyck CFL.

One disadvantage of many declarative frameworks for analysis — including
DIMPLE" — is that they are designed for analyzing whole programs and are
less well suited, at least out of the box, for modularized analyses. Besson
et al. (2003) apply Datalog to class analysis or reaching-types analysis; that
is, answering the question “what types of value may this expression evaluate
to?” This analysis can be used for coarse memory disambiguation but also
enables many profitable optimizations, such as virtual method resolution at
monomorphic call sites (Sundaresan et al. 2000). The major innovation in
Besson et al.’s work is that it supports developing modular analyses as open
Datalog programs.

Hanbing Liu and] Strother Moore encoded the semantics for the Java
Virtual Machine in the ACL2 theorem prover by developing an interpreter for
the JVM in pure Lisp. As a consequence of their work, it is possible to use
ACLz2 to reason about Java programs. In a similar vein, Leroy (2006) developed
a certified compiler for a C-like language in the Coq proof assistant. There
is, of course, a strong and obvious analogy between using a theorem prover
or proof assistant to reason about programs and using a logic programming
system to reason about programs.

Solving declarative analysis queries

Prior to his work on interprocedural dataflow analysis as graph reachability,
Reps (1994) showed how to automatically derive demand-driven versions of
dataflow analysis algorithms — that is, analysis procedures that calculate exact
results for a particular subset of the program or for a particular program point.
His technique relied on the magic-sets transformation: applying this trans-
formation to a logic program implementing an exhaustive analysis algorithm
results in a demand-driven version of the algorithm.

Saha and Ramakrishnan (2005) adapted techniques for incremental and
goal-driven evaluation of tabled Prolog in order to formulate incremental and
demand-driven versions of program analyses. They evaluated their work on a
version of Andersen’s analysis for C, treating programs consisting of tens of
thousands of preprocessed statements. As with the subset-based points-to
analysis we present in Section 3.6, their analysis is flow-, field- and context-
insensitive. (It is difficult to derive a sound field-sensitive analysis for C, since C

77

admits many unsafe features. In contrast, the points-to analysis we presented is
flow- and context-insensitive, but field-sensitive.) Their work focuses on apply-
ing techniques for improving the performance of logic programs to improving
the utility of logic programming as a tool for program analysis.

Several special-purpose systems have been developed to allow declarative
specifications of program analyses. The BANE toolkit (Fahndrich and Aiken
1997) and its successor BANSHEE (Kodumal and Aiken 2005) generate special-
ized solvers for program analyses specified as constraint-satisfaction problems.
An analysis designer would use these tools by developing a preprocessor to
extract relevant constraints from the program text and then declare the analy-
sis itself in terms of constraints on terms or sets. BANSHEE enjoys a rich type
system and static checking of type-safety for analyses. BANSHEE also achieves
high performance — a BANSHEE implementation of Andersen’s analysis for C
analyzed hundreds of thousands of lines of preprocessed C code in seconds
and millions of lines of preprocessed C code in under a minute. Like the work
of Saha and Ramakrishnan, BANSHEE also provides support for incremental
evaluation of analysis queries.

BDD-based solvers and approaches provide an attractive solution for man-
aging scale in many kinds of program analyses. However, the performance
(and tractability) of BDD-based analysis approaches depends on the size of the
BDD graph, which in turn depends on the variable ordering that the BDD user
has chosen. As we have discussed, choosing a good variable ordering for a BDD
is NP-complete; a bad variable ordering can, for some functions, mean the
difference between near-linear time and exponential time (Bryant 1992; see).

Lhotédk and Hendren (2004) developed Jedd, which extends the syntax and
semantics of Java with support for programming with relations. Jedd uses BDDs
and propositional satisfiability to translate from a high-level relational program-
ming model to low-level BDD operations. It requires users to develop a BDD
variable ordering and provides support for profiling BDD size and performance
given a particular ordering.

The BDDBDDB system (Whaley and Lam 2004; Lam et al. 2005) is a special-
ized implementation of Datalog based on binary decision diagrams (Bryant
1992); we reviewed the particulars of the BDD representation earlier in this
chapter. Whaley and Lam (2004) demonstrate the performance of two BDDB-
DDB implementations of Andersen’s analysis; their context-insensitive analysis
is roughly comparable to other known techniques. Where the BDD-based rep-
resentation excels, however, is in handling context-sensitive analyses — many
of which would produce results too large to represent explicitly in a Prolog

78

database. BDDBDDB requires the user to specify a variable ordering, but it
features a machine learning-based process for automatically identifying a good
ordering candidate from among several heuristically determined possibilities.

DIMPLE ™" in context

The work we discussed under the heading Declarative and relational frame-
works for analysis primarily treats declarative formalisms for programs and
program analysis problems. Obviously, the choice of a formalism for expressing
analyses is somewhat subjective. However, in our opinion, the relational model
of logic programming approaches (including piIMPLE ") is rather easier to use
than constraint- or set-based models.

In contrast, the work we mentioned relating to Solving declarative analysis
queries treats implementation techniques for efficient tools to handle evalu-
ating analysis problems expressed in terms of various formalisms. DIMPLE™
already benefits from advances in logic programming system implementation;
the efficient execution of a tabled Prolog system makes whole-program analyses
feasible. However, users who wish to exploit capabilities not directly available
in the underlying Prolog system could easily use DIMPLE™ as a front-end for
a specialized solver, in a manner similar to the way we have implemented a
BDDBDDB-based query engine for the biMPLE" backend. Such an approach
would use the DIMPLE™ IR, statement processing language, and analysis lan-
guage, but would override the DIMPLE™ code generator by writing a Prolog
procedure that translates from user analysis rules to the format or formalism
expected by an external tool.

Perhaps the best characterization of our work is that DIMPLE™ provides
an interface, framework, and language to facilitate using a logic programming
system for program analysis. The related work under discussion either presents
formalisms for program analysis or advances the state of the art of logic pro-
gramming, perhaps with immediate application for program analysis problems.
Since we have developed an application that exploits many of the features
of an advanced logic programming system, contributions that improve logic
programming systems are complementary to ours.

The DIMPLE ™" system enables analysis designers to rapidly prototype new
program analyses in an interactive fashion. Unlike every other system under
discussion, DIMPLE " enables analysis designers to use logic programming for
every phase of the analysis development process. DIMPLE™ is also unique in
that the entire program text is available to the analysis designer for prototyping.

79

However, DIMPLE" enables users to discard irrelevant relations for efficient
execution of production analyses.

While the other analysis frameworks we have mentioned represent excel-
lent research contributions, no other system under discussion is as suitable for
prototyping and interactive, exploratory development as DiIMPLE". The DIM-
PLE" analysis developer need never leave the declarative world of Prolog and
the DIMPLE™ IR, whether preprocessing input programs, defining statement
processing routines, or declaring and evaluating analysis rules. In contrast,
other systems like BANSHEE and BDDBDDB require the user to develop a special-
ized preprocessor for source text that extracts relations of interest, to declare
a set of rules or constraints, and then to feed preprocessed program text and
the user-declared rules into a specialized solver. If there is an error in the
preprocessor or rules, the user must start over; in DIMPLE", one may simply
assert or retract additional rules or relations as necessary. Other factors that
inhibit casual experimentation and rapid, interactive prototyping come from
implementation details: BANSHEE analyses are C programs that link with a
specialized solver library. BDDBDDB specifications require a good BDD variable
ordering. Deciding on a good ordering is nontrivial and requires either a user
with a profound understanding of the BDD abstraction and the problem domain
or a user who is willing to wait for the BDDBDDB tool to automatically apply
time-consuming heuristics and learning techniques to find a good ordering.

In conclusion, DIMPLE" is a framework that facilitates rapid prototyping,
development, and implementation of program preprocessors and static analy-
ses. Because the analysis designer can defer decisions about which program
statements are relevant — or even which analysis rules are necessary — until
the analysis is actually producing results, DIMPLE™ encourages experimenta-
tion and interactive development and provides for a spectrum of executable
analyses from flexible prototypes to efficient production implementations.
More generally, we have confirmed prior work that has asserted the suitabil-
ity of general-purpose logic programming systems for program analysis and
processing tasks.

4. EFFECT INFERENCE FOR SAFE PARALLEL EXECUTION

The concept ‘cause,” as it occurs in the works of most philosophers, is
one which is apparently not used in any advanced science. But the
concepts that are used have been developed from the primitive con-
cept (Which is that prevalent among philosophers), and the primi-
tive concept, as I shall try to show, still has importance as the source
of approximate generalisations and pre-scientific inductions, and
as a concept which is valid when suitably limited.

— BERTRAND RUSSELL (1948)

Effect systems extend classical type systems with information about the
computational effects exhibited by expressions, statements, and methods. Just
as type signatures characterize the range of values an expression may assume,
effect signatures can provide concise, useful summaries of the potential effects
of a particular method invocation. Because of this capability, effect systems
currently enjoy widespread application in several problem domains, including
program analysis, semantics-preserving program transformation, software
understanding, verification, and compile-time memory management; our goal
in using effect signatures is to identify noninterfering computations on different
objects in order to exploit implicit oLp.

In this chapter, we present two innovations that can increase the expressivity
and precision of effect signatures. Initialization effects are writes that occur to
the state of an object while it is being constructed but before it is available to the
rest of the program; quiescing fields are instance variables of an object whose
values remain constant after the dynamic lifetime of the object’s constructor.
We present these in the context of a fairly simple effects system for Java, but
these novel features are based on concepts orthogonal to the underlying effects
system and could be adapted to more expressive systems.

In Chapter 2, we introduced notions of function purity that exploits one
engineering property of object-oriented programs: namely, that mutable state
is typically accessed through the interface of the object that contains it. We
refer to instance methods that are pure with respect to all mutable state outside
of their receiver object as externally pure; we refer to methods that may read
(but not write) external mutable state as externally read-only. In this chapter,
we present analyses to infer such methods automatically.

81

82

Perhaps most surprisingly, we show that realistic Java programs exhibit a
substantial degree of mostly-functional behavior. “Mostly-functional,” due to
Knight (1986), describes a programming discipline in which the presence and
extent of computational effects are limited as much as possible. In the context
of Java, this includes both accesses to quiescing fields — which are read-only
after the object is available to the rest of the program — and the prevalence of
externally-pure and externally read-only methods, whose updates to mutable
state are only visible via an object’s interface.

4.1 MOSTLY-FUNCTIONAL BEHAVIOR IN JAVA PROGRAMS

Knight (1986) coins the term “mostly-functional” to describe a programming
style in which unnecessary side effects are limited as much as possible. Knight
also notes that programming languages like Multilisp (Halstead 1985) exploit
a similar style: namely, annotating an expression with future indicates either
that it is side-effect free or that its side effects will not interfere with other
parts of the program. The idea behind oLp, which we introduced in Chapter
2, is that many nontrivial Java programs are written in a similar kind of style:
namely, that most of the side effects exhibited by a method will be benign,
unobservable, or confined to the receiver object of that method.

Although he is describing a language based on Scheme that does not ex-
plicitly support objects and classes as language-level abstractions, Halstead
(1985) describes a programming style that is very similar to that encouraged
by contemporary object-oriented languages:

[W]here side effects are used, as in maintaining a changing database,
they can be encapsulated within a data abstraction that synchro-
nizes concurrent operations on the data. The data abstraction can
ensure that the data are only accessed according to the proper
protocol.

Multilisp thus supports a programming style in which most code
is written without side effects, and data abstractions are used to
encapsulate data on which side effects may be performed [....] The
programmer’s aim in using this style should be to produce a pro-
gram whose side effects are compartmentalized carefully enough
that any module may safely be invoked in parallel with any other. If
this style is followed, the difficulties caused by the presence of side

83

effects will be isolated to small regions of the program and should
therefore be reduced to manageable proportions.

Our intuition about object-oriented programs is that, as in mostly-functional
programs, effects are often “compartmentalized” Unlike the effects exhibited
by programs in mostly-functional languages, the effects exhibited by object-
oriented programs are encapsulated within method, instance, or class bound-
aries rather than within module boundaries. Effects on ephemeral state, such
as increments to a loop induction variable, are by definition invisible to other
method activations. Effects on durable state, such as accesses to instance or
static fields, often occur in a controlled way: some client of a particular object
interacts with it through a well-defined interface.

In the remainder of this chapter, we will present analyses that can con-
firm this intuition about effecting behaviors in object-oriented programs. We
will also refine the effects system for object-oriented programs that we ini-
tially sketched in Section 2.1; our goal will be to more precisely capture useful
assertions about the effecting behavior of object-oriented programs by sum-
marizing methods more accurately and masking effects that we can guarantee
to be unobservable except from code executing in the methods on a particular
object.

4.2 OBJECTS AND EFFECTS: BACKGROUND AND MOTIVATION

Recall that an object-oriented effects system is like a classical type-and-effect
system in that it tracks not only the what — that is, the shapes and uses of
values — but also the #ow — that is, the effects on durable state exhibited by a
particular computation." An object-oriented effects system is different from a
classical type-and-effect system, though, in that it treats changes to the state
of some particular object specially; it is able to distinguish between a method
that may write an int to the f field of its receiver object and a method that may
write an int to the f field of some other object. When applied to a typed, safe
language like Java — in which a given memory location may only be described
by one kind of field reference — an object-oriented effects system should also
be able to identify that accesses to the f and g fields of arbitrary objects are
disjoint.

Given a program with sound effects annotations (whether these are au-
tomatically derived or placed manually by the programmer), we can derive

*We initially defined these concepts at the end of Section 2.1, on pages 11—17.

84

scheduling constraints for parallel executions that will guarantee sek (cf. Def-
inition 2.8 on page 19) under the piIMA model, since methods with disjoint
effects will commute. In this section, we will provide some background on
object-oriented effects systems before introducing a simple system, which we
shall successively refine by developing new features to improve its precision.

The Greenhouse-Boyland system

Greenhouse and Boyland (1999) developed an effects system for object-oriented
languages like Java. Their effects system describes READ and WRITE effects that
may occur in a hierarchy of regions:

. The global region All contains all mutable state for an entire program,

. All contains static regions that model the state of static fields and instance
regions that contain part or all of the state of individual objects (an object may
have several instance regions), and

. individual instance regions contain regions corresponding to the state of indi-
vidual instance fields.

The state of an object may contain the entire state of another object as part
of its internal representation. For example, a dictionary object may contain
a search tree object that is only accessible from the instance methods of the
dictionary object. To address this possibility, Greenhouse and Boyland also
provide an unshared annotation on reference-valued fields. This annotation
indicates that any object referred to by an unshared field may only be referred
to by that field and thus may be considered logically part of the state of its
containing object.

Greenhouse and Boyland present an intraprocedural algorithm to check
user-provided effects signatures of methods and to check user-provided un-
shared annotations on object fields, but they do not present an algorithm
for reconstructing effect, region, and sharing information for unannotated
programs.

4.3 A LIGHTWEIGHT OBJECT-ORIENTED EFFECTS SYSTEM

We now introduce a lightweight, straightforward object-oriented effects system.
The basic ideas of our system are similar to that of Greenhouse and Boyland.

85

There are, however, nominal differences, semantic differences, and technical
differences. The nominal differences are, by definition, straightforward: we call
the global region p,, for example. The semantic differences are rather more
interesting: notably, we do not support multiple instance regions per object,
and we do not distinguish between instance regions and static regions. Instead,
effects on static fields are merely effects on static field references in p,.

The technical differences between our approach and that of Greenhouse and
Boyland are most prominent; some of these have to do with our implementation
and the fact that we are inferring rather than checking effects:

. Since our source language is Java bytecodes rather than Java source, and since
our target language is not a dialect of Java with explicit support for effects,
we provide an inference algorithm rather than a checker for user-supplied
annotations.

. As above, we support only one region for the nominal state of each object.
However, we also support a hierarchy of regions based on an inclusion relation:
field references are contained within abstract regions, which correspond to sets
of abstract objects (taken from a may-alias analysis), or to the whole program.

Other technical details of our system represent novel contributions:

. We introduce and infer a new kind of effect, initializations, which are writes
to the state of an object while it is being constructed.

. We automatically identify quiescing fields. A quiescing field is one whose value
does not change after the object containing it has been constructed; READ
effects on such fields can be safely masked when identifying interfering effects,
since they represent accesses to run-time constants.

. We automatically identify the degree of purity of a method. As we introduced
in Definitions 2.6 and 2.7, methods may be “pure” (for a given definition of
pure) or “read-only” both in an absolute sense and with respect to all of the
state external to an object.

We present these developments in the context of a straightforward effects
system, although they are orthogonal to the particular effects system in use
and could benefit a more expressive system. We do this not only because it
allows a more straightforward presentation, but also because it emphasizes
that our novel features can dramatically increase the precision and expressivity
of even a lightweight, simple effects system.

86

Relation

Description

formal(1,1, m)
actual(s, 1,1)
assign(ly, 1,.)
load(s, 1, Ly, k. v)
load(s, 1,1, [1)

load(s, 1,1, k.V)
store(s, Ly, kv, 1)

store(s, Ly, [1,1)
store(s, L, kv, 1)

sem
S—m

Fl:v

pt(L, p)

Holds when 1 is the formal parameter at position 1i (ei-
ther this or a natural number) in method m.

Holds when s invokes some method with | as the actual
parameter at position 1.

Holds when the assignment |, = 1, occurs in the pro-
gram.

Holds s reads the value of the k.v instance field from
the object referred to by 1}, and copies it to L.

Holds when s loads | from an array referenced by l;,.
Holds when s loads from the static field k.v into L.
Holds when a heap store statement s replaces the value
of the k.v field in the object referred to by 1, with the
value of L.

Holds when s stores | into an array referenced by l;,.
Holds when s stores the value of 1 into the static field
K.V.

Holds when statement s is part of method body m.
Holds when statement s contains a method invocation
that may select m, viz,, there is a call-graph edge from
stom.

Holds when local L has type T. (Since locals have unique
names, we need not consider typing environments.)
Holds when p overapproximates the points-to set of L.

Table 4.1: Analysis-specific IR relations for a simple object-oriented effects

system

87

We begin by defining an analysis-specific intermediate representation,
which identifies heap loads and stores that execute in a particular method. In
the presentation that follows, we assume the existence of the analysis-specific
IR relations from Table 4.1, which includes conservative approximations of the
call graph (s — m) and the may-alias relation (pt); note that these are very
similar to the analysis-specific IR presented in Section 3.6 except that we do
not ignore operations on scalar values. Following Greenhouse and Boyland,
we treat array loads and stores as accesses to a special field called []. We treat
static field loads and stores as accesses to instance fields of a distinguished local
lw; since we record the declaring class and field name of all field accesses, we
lose no precision by doing so. With the program distilled into this IR, we can
begin developing a family of related effects inference algorithms of increasing
sophistication.

The effects annotation on some statement, which we denote as ¢(s), con-
sists of READ, WRITE, and (in our more sophisticated system) INIT sets of
abstract locations. Abstract locations denote sets of concrete locations in
which an effect may occur and consist of a pair (p, k.v), where p is an abstract
region in which an effect may occur and k.v describes a field reference qualified
by the declaring class of the field.

Abstract regions consist of (possibly-empty) sets of abstract object iden-
tifiers (we leave the representation of these defined by a particular may-alias
relation pt), the distinguished abstract region T, which includes all possible
abstract object identifiers, or special region variables p,;s or p,..., denoting
the regions reachable from formal parameters this or o - - - ; these variables
are used to expand method summaries at call sites. We summarize the effects
of methods on objects referred to by their parameters but lose precision for
objects reachable from the fields of method parameters.

Effect annotations, as tuples of sets, form a lattice; since we are concerned
with unifying effect locations, we only detail the join operation here. The join
of two effect annotations consists of the READ set of abstract locations formed
by unifying the READ sets from each annotation, the WRITE set formed by
unifying the WRITE sets from each annotation, and the INIT set formed by
unifying the INIT sets from each annotation. Unifying two sets of abstract
locations A, and A,, as in a READ, WRITE, or INIT set, proceeds as follows:

Divide each set A; into the two disjoint sets V; and C; so that V; is the set
of all abstract locations from A; whose regions are region variables, so that C;
is the set of all abstract locations from A; whose regions are sets of abstract
object identifiers or T, and so that V; U €; = A;. V, UV, is defined simply as

88

the union of the two sets. C, LI €, consists of the union of the following:

. The set of locations whose field identifiers appear in either C, or C,, but not

both:
{{p,kv) + ({p,kv) € C,A—F(p',kv) € C,)V

({p, kv)y € C, A—F(p’,kv) € C,)}

. The set of locations formed by unifying the regions of each abstract location
whose field identifier appears in G, and C,:

{{pup’,kv)y : {(p,kVv) € CA{p/,kVv) € C,}
We can then define A, LA, asV, UV, U (C, LUGC,).
A simple, sound effects inference algorithm

Inferring sound but imprecise effects annotations for Java bytecodes is fairly
straightforward. We know that heap reads and writes occur in a method if
the load or store relations occur in its body or in the effects annotation of
any method that it may transitively invoke. We also know what sort of data
are being read or modified by field reads and writes, since Java putfield
and getfield instructions (and their putstatic and getstatic analogues)
include a field reference. A bytecode field reference is like an abstract field
reference (Definition 2.3), but without any region information; it contains a
declaring class name k and a field name v.

Abstract field references disambiguate the meaning of a field name by
translating from a simple name (as would appear in Java source code, like f) to
a name that is qualified with the name of the field’s declaring class (like Foo . f).
In so doing, however, abstract field references also impose constraints on the
potential types of the base object. Because Java is a typed language, it is not
possible to refer to an object of class c via a reference of type d, where d is not
a supertype of c. (Doing so will result in either a compile-time or run-time
error, depending on the particular circumstances of the cast.) Therefore, if a
heap load accesses some field k.v from some object referred to by 1, we can
deduce that 1 refers to an object that is a subtype of k.

Because Java’s type system allows that a particular memory location may
only be described by one field name, we can infer that a statement that exhibits
an effect on some field k,.v, must not interfere with a statement that exhibits
an effect on field k,.v, if v, and v, are distinct names or if k, and k, are distinct

89

RPT-OTHER

RPT-FORMAL RPT-GLOBAL 1 # 1y —formal(l,1, m)
formal(1,1, m) pt(L, p)

rpt(L, pi) rpt(lw, Pw) rpt(L, p)
SIMPLE-READ SIMPLE-WRITE
load(s, 1, Ly, k. v) rpt(ln, p) store(s, 1, 1y, k.v) rpt(lh, p)

¢@(s) O ReAD : {(p, k. V)} @ (s) J wrITE : {{p, K-V)}

SIMPLE-SUMMARY SIMPLE-CALL

Sor 't ,Sn €M s —m’
e(m) T @(so) U+ L @(sn) @(s) 2 pmap(s, ¢(m'))

Figure 4.1: Rules for reconstructing effects annotations in the straightforward
effects system

classes. This alone provides a useful measure of memory disambiguation for
field reads and writes.

We assume an input program with no effects annotations and present rules
for reconstructing sound effects annotations in Figure 4.1. We denote an effects
annotation on a particular statement as @(s); our inference rules identify the
constraints on ¢ (s) induced by each statement type. Each effect is a 2-tuple
consisting of a kind (either READ or WRITE, in this system) and an abstract field
reference.

Heap loads and stores exhibit READ and WRITE effects. We identify regions
in which these effects may occur by the rpt relation. rpt relates a local variable
to its associated region: a region variable for formal parameters, the global
region T for globals, and the set of abstract objects aliased by the local in other
cases.

The rules SIMPLE-READ and SIMPLE-WRITE, which establish lower bounds
on the effect annotations for load and store statements, are straightforward.
SUMMARY gives the annotation summary for a method body; it is this summary
that is instantiated at call sites. Statements containing method invocations
must have an effects signature that is greater than the union of the effects of all
statements in any method that might be selected by a given call site, as given
by SIMPLE-SUMMARY and SIMPLE-CALL.

90

The function pmap transforms effects annotations by substituting regions
(or region variables) for region variables in a method summary at the point
of a call to that method. pmap replaces every region variable with the region
variable or explicit region associated with the local of the corresponding actual
parameter, as given by the rpt relation.

4.4 INITIALIZERS AND INITIALIZATION EFFECTS

Type-and-effect systems identify READ and WRITE effects that code may exhibit
upon shared state. (Some, but not all, type-and-effect systems also identify
additional effects, such as allocation, exception raising, or taking references.)
If the goal of effect systems is to identify potentially interfering computational
effects, this taxonomy is rather impoverished, because it does not distinguish
initializations, which are a special kind of WRITE that will not interfere with
any other effects.

Background and definitions

We will introduce the notion of initializations with a simple example, but first
we provide some background on some properties of Java programs and objects.

Java objects are created via the new operator, which performs three tasks
before returning a reference to the newly-allocated object: memory allocation,
zero-filling object fields, and constructor method invocation. Constructors may
invoke other constructors declared in the same class (via the this () syntax)
or in superclasses (implicitly or explicitly via the super () syntax), but there is
no way to invoke a constructor on an object after the dynamic lifetime of its
constructor invocation completes. There is also no way to create and use an
object without invoking its constructor. (This is the case in Java source because
new, which is the only way to create an object, includes both object allocation
and constructor invocation. These tasks correspond to distinct Java bytecode
instructions — new and invokespecial — but the Java Virtual Machine will
signal an error if code attempts to access an object that has been allocated but
not constructed.) As a consequence, each object will be constructed exactly
once before it is accessible to the code that created it.

Consider the String class in the Java standard library. String is an im-
mutable class; once an instance of String has been created, its contents cannot
be modified. A constructor for the String class, in setting up the state of an
individual instance, will exhibit WRITE effects on that object’s fields. However,

o1

these WRITE effects will never interfere with other effects, since the only WRITE
effects on a String will occur during its constructor and the code that creates
a String will not be able to read its state until after the constructor completes.

Immutable classes present an extreme example, but WRITE effects on an
object — even a mutable one — by its constructor will not interfere with other
effects on that object that occur after the constructor completes. Classical
type-and-effect systems do not discriminate between writes that occur to an
object during its constructor and writes that occur after an object creation has
completed. Such a system may spuriously identify WRITE effects occurring on
an object during its creation as interfering with WRITE effects occurring on
that object (or on other objects) that have already been created.

We will present a way to discriminate between WRITE effects to objects that
have been created and initializations, which are writes that occur to an object
while it is being constructed. However, we will first introduce the notion of an
initializer method and present an algorithm for identifying which methods are
initializers for given objects.

Initializer methods

Informally, an initializer method (or simply an initializer) on some object o is a
method that executes on o during the dynamic lifetime of its constructor. Since
we would like to use the notion of initializer methods to identify wRITE effects
that are guaranteed to occur on an object while it is being constructed, we are
not interested in any method that merely may initialize part of an object’s state;
rather, we are interested in methods that may only execute on an object during
the dynamic lifetime of its constructor.

If we can assume a closed world, we can identify such methods with a
simple extension to a conservative static approximation of the program’s call
graph. This extension annotates call-graph edges with information about a
method’s receiver; we thus term it a receiver-sensitive call graph.

Definition 4.1 A receiver-sensitive call graph (Rsca) is a set M of nodes cor-
responding to method bodies, a distinguished start node my,,, € M, and a
set C of labeled call-site edges. An edge is of the form m —, m/, indicating
that m contains a call site that may invoke m’ with a receiver of p, which is
either this, indicating that m'’ is always invoked on the same object as m, or T,
indicating that m’ may be invoked on some other method or is not an instance
method.

92

We can now define the notion of initializer methods more formally:

Definition 4.2 An initializer is a method that may only execute on an object
during the dynamic lifetime of its constructor. m is an initializer if and only if
every path from the root of the RscG to m goes through a constructor c{™, and
every path from any cI™ to m consists strictly of this-labeled edges.

We can define a conservative overapproximation of the initializer methods
in a program inductively as follows:

1. mis an initializer on o if m is a constructor that may be executed on o
(that is, a constructor declared in the class of o or in one of its super-
classes).

2. M is an initializer on o if every edge to m in the RSCG is this-labeled and
originates from an initializer on o.

In the remainder of this discussion we will assume a closed world. We
note, however, that this technique is still applicable in an open-world situation
— that is, in which the entire program and libraries are not available to be
analyzed. It is still possible to identify initializers in an open world as long
as the rRscaG is constructed in such a way as to include conservative, sound
assumptions about open parts of the program. For example, private methods
could still soundly be identified as initializers even in an open world, since they
can only be invoked from within their declaring class.

Initialization effects

An initialization effect is a write to an object’s state that occurs during the
dynamic lifetime of its constructor. Since we have already defined an initializer
on some object 0 as a method that is only transitively invoked through zero
or more this-edges in the RscG from a constructor on o, we can identify ini-
tialization effects rather straightforwardly: An initialization effect is a WRITE
effect that occurs from within an initializer and on some field of its receiver.
We denote sets of initialization effects as an INIT set in an effects annotation
and present updated inference rules for initializer methods and for wRrITE and
INIT effects in Figure 4.2. (The WRITE rule from Figure 4.2 supercedes that
from Figure 4.1.)

If we can assume that an object will not be used until the after the dynamic
lifetime of its constructor, then we can guarantee that INIT effects on some

93

IMETH-IMMED IMETH-TRANS
m is a constructor (Vm/,p)m’ —, m = imeth(m') A p = puis
imeth(m) imeth(m)
WRITE INIT
store(s, Iy, K.V, 1) rpt(lh,) store(s, Ly, kv, 1) SEM
sem —(p = puis/\imeth(m))) imeth(m) rpt(ln, Penis)
©(s) J WRITE : {{p, K.V)} ©(s) 2 INIT : {{Penis, K-V)}

Figure 4.2: Inference rules for initialization methods and initializer effects

object o will not interfere with other read or write effects on objects that are
not statically distinguishable from o. This assumption — that uses of o by
code outside of its constructor will come strictly after the dynamic lifetime of
its constructor — is sound if no references to o may leak to code that might
execute before the constructor for o has completed execution. We will make
the (unsound) assumption that any such leak will not result in an object being
used before the dynamic lifetime of its constructor completes. However, a
variety of techniques are applicable to treating such leaks soundly; we sketch
one such technique here.

A label-flow analysis could be used to indicate those constructors that might
leak a reference to the constructed object.? Alternatively, a more expressive
effects system that tracks reference accesses could be employed to find such
leaky constructors; one such system is presented by Cherem and Rugina (2007).
The classes containing such constructors could then be considered to not have
initializers; as a consequence, WRITE effects occurring during the dynamic
lifetime of a constructor on an object of such a class would be conservatively
regarded as potentially interfering with write effects that occur strictly after
the completion of an object’s constructor.

Initialization effects are a useful addition to the expressivity of object-
oriented effects systems. Since the initializations of a field during an object’s
creation will not interfere with any reads conducted after the dynamic lifetime

2Such analyses can be efficient enough for production use: Pratikakis, Foster, and Hicks
(2006) present a framework for solving label-flow analysis problems via crL-reachability; while
the worst-case complexity of crL-reachability was long understood to be cubic, Chaudhuri
(2008) demonstrated that the problem has a subcubic worst-case bound.

94

of the object’s constructor, initialization effects allow effect systems to statically
identify a greater range of effects as noninterfering. As we shall see, infer-
ring initialization effects also enables additional analyses, such as identifying
quiescing fields.

4.5 QUIESCING FIELD INFERENCE

Some storage is mutable for its entire lifetime, but the lifetimes of many lo-
cations can be divided into two phases: an initialization phase, in which the
contents of a location are mutable, and a read-only phase, in which the contents
of a location will not change. We call such fields quiescing fields when the phase
transition happens at a statically identifiable and semantically useful place. In
this section, we introduce the concept of quiescing fields, explain how we can
identify them, and describe why they are useful; compare quiescing fields to
Java’s final fields; and identify the static and dynamic prevalence of quiescing
fields in the Java programs from the DaCapo benchmark suite.

Quiescing fields, defined and identified

We define a quiescing field as an instance field (i.e. an object member) that is
mutable while its containing object is constructed but is immutable for the
entire period of program execution strictly after the dynamic lifetime of its
containing object’s constructor. As a consequence, a quiescing field will have
the same value for the entire period that the object containing the field is
accessible to the code that created it (and to the rest of the program, modulo
the no-leaks assumption of the previous section).

Because a quiescing field is guaranteed not to change after the object that
contains it is fully constructed, quiescing fields represent a useful kind of
run-time constant. If quiescing fields are prevalent in a program, identifying
them can greatly simplify analyses and transformations that require accurate
interprocedural data dependence information.

Given sound effects annotations including initialization effects, it is quite
straightforward to identify quiescing fields: k.v is quiescing if and only if no
effect annotation in the whole program contains an abstract location implicat-
ing kv (e.g. (p, k-Vv)) in its WRITE set. (If kv is not implicated in the INIT or
WRITE sets of any effects annotation, then it is never written after allocation
and is trivially a quiescing field.)

Because we need only examine every effect in the whole program once in

95

order to determine which fields are implicated in WRITE effects — and we need
not even unify method summaries at call sites in order to do so — quiescing
field inference scales linearly with the number of statements in the program.

Quiescing fields compared to final fields

The Java language (Gosling et al. 2000) provides the final keyword and the
semantic guarantee that instance variables declared as final will be assigned
to exactly once for any given containing object. The final annotation provides
useful documentation to human readers of a program and a useful constraint
for use by compilers and analyses.

However, because the guarantee of finality is enforced by a rather coarse
flow analysis (identifying “definite assignment,” that is, that each final field is on
the left-hand side of exactly one assignment along every possible path through
each constructor of the object containing it), final is of limited applicability.
To give one example, since all assignments to final fields must occur in the
body of a constructor, it is impossible to share initialization code common to
several constructors in a private instance method.

While it is often possible to restructure the code in a class so that a quiescing
field meets the criteria for final, such a rewrite may be inconvenient. Further-
more, rewriting code so that a quiescing field is final may well obscure the
clear meaning of the program for a human reader. Since many programmers
will not immediately realize the benefits of having as many fields as possible
declared final, manual code transformations to expose more fields as final
are likely to be regarded as insufficiently profitable.

On the contrary, quiescing fields may be written arbitrarily many times
during the dynamic lifetime of an object’s constructor, not strictly in the static
body of the constructor and exactly once along each path of each constructor.
Quiescing fields may be read and written freely during the dynamic lifetime of
their containing object’s constructor, so long as they are not written to after
their containing object is fully constructed. Finally, no programmer annotations
are necessary to identify quiescing fields, since we present a straightforward
and efficient technique for automatically inferring quiescing fields.

Static and dynamic prevalence of quiescing fields

We evaluated our definition of quiescing fields on seven of the programs from
the DaCapo benchmark suite (Blackburn et al. 2006).

96

Static Dynamic
Input Time % FF % QF % FF % QF
antlr 3.11 19.89 49.25 3.65 24.13
bloat 3.16 22.30 53.01 64.05 70.05
eclipse 3.23 21.50 51.56 77.69 78.53
hsqldb 3.73 18.67 47.97 20.12 58.75
jython 3.61 18.74 52.99 19.17 50.30
luindex 3.06 20.82 51.06 43.87 47.43
pmd 3.35 19.48 48.47 0.78 24.93

Figure 4.3: Static and dynamic prevalence of final and quiescing fields in select
DaCapo benchmarks. Time represents analysis time in seconds; static numbers
show the percentage of fields implicated in at least one static effect that are
final (FF) and quiescing (QF); dynamic numbers indicate the percentage of
dynamic reads in a benchmark execution that are of final (FF) and quiescing
(QF) fields.

We identified the static prevalence of final and quiescing fields by deter-
mining what percentage of all fields implicated in any effect were declared
final and what percentage were inferred to be quiescing. (Since final fields
are, by definition, quiescing, counts of quiescing fields include counts of final
fields.) We also instrumented the Jikes RVM in order to get a trace of all in-
stance field reads from a benchmark execution. From this trace, we derived the
percentages of dynamic instance field reads that access final and quiescing
fields; again, the count of quiescing field reads includes final field reads.

Figure 4.3 gives our complete results; in summary, we found that between
18.7% and 22.3% of fields implicated in any static effects annotation were
declared final; between 48% and 53% of fields implicated in any static effects
annotation were identifiable as quiescing. Between 0.78% and 77.7% of dynamic
reads were from final fields, and between 24.13% and 78.53% of fields were
from quiescing fields. The authors of the bloat, eclipse, and luindex benchmarks
seem to have declared a high percentage of frequently-read quiescing fields as
final;in the other benchmarks, the disparity between the number of dynamic
reads of final and quiescing fields is much greater.

97

4.6 DEGREES OF PURITY

Methods may be pure. The classic definition identifies a method that exhibits
no effects on mutable state as pure. However, this definition fails to admit
idempotent methods that create and modify objects in order to complete their
work.

A less restrictive definition, due to Leavens et al. (1998) and applied for
static analysis by Salcianu and Rinard, characterizes a method as pure if and
only if it does not modify any state that exists immediately before method entry.
This definition of purity captures a notion of method purity as the absence of
potential interference with other code: a method may have effects on mutable
state that does not exist before it executes. Other definitions of purity are
also possible; the concepts we present in this section are generally orthogonal
to a base notion of purity and can be straightforwardly adapted to different
definitions.

In accepting a definition of purity, we also decide which effects constitute
“impure” behavior. Perhaps all side effects are “impure,” as in the classical
defintion. Alternatively, following Leavens et al., we could ignore certain READ
or WRITE effects on objects that did not exist at a method’s entry. (While our
system does not provide for precisely tracking READ effects on newly-created
objects or for tracking all wRITE effects on such objects, we can ignore many
writes to newly-allocated objects by masking INIT effects.) We can then identify
some methods as read-only — these are methods that may have “impure” READ
effects (but not “impure” WRITE effects) on mutable state. (Note that all pure
methods are also read-only methods.)

If we are to characterize the purity of methods in typical object-oriented pro-
grams, we may wish to characterize instance methods by the effects that they
have on mutable state that exists outside of the receiver object. In Section 2.2,
we introduced the concepts of externally-pure and externally-read-only meth-
ods (Definitions 2.6 and 2.7), which are methods that are pure or read-only
with respect to all state external to their receiver object.

As we have said before, certain effects are benign or unobservable and
could well be masked. The idea behind degrees of external purity is that it
might be useful to categorize methods by where effects occur — whether or
not these effects could be masked. We can combine the notion of external
purity with initialization effects and quiescing fields by masking iN1T effects
(which represent writes to the state of objects that did not exist when the
method began) and masking READ effects on quiescing fields. If we do so, we

98

Externally
Input Time % Pure % RO
antlr 4.47 79.19 81.16
bloat 4.63 77.05 78.40
eclipse 4.63 79.21 80.73
hsqldb 5.44 76.87 78.26
jython 5.25 77.02 78.31
luindex 4.39 80.30 81.89
pmd 4.88 79.05 80.50

Figure 4.4: Percentage of all instance methods that are externally-pure or
externally-read-only; INIT effects and effects on quiescing fields have been
masked.

can identify a vast preponderance of instance methods as externally-pure or
externally-read-only, as in Figure 4.4.

4.7 RELATED WORK

Work related to our contributions in this chapter falls into two broad categories:
work on effects systems and work on inferring fields or memory locations that
are immutable for at least some part of their lifetime.

Effect systems and applications

There is a substantial and broad canon of theoretical contributions and appli-
cations for effect systems. Several good overviews of research in this area are
available, including Nielson and Nielson (1999) and Henglein, Makholm, and
Niss (2005). We shall focus on work that imposes effect systems on object-
oriented languages and on notable applications of effect systems: region-based
memory management, static race detection and prevention, and verification.
Region-based memory management (Tofte and Talpin 1997) aims to achieve
the convenience and correctness of automatically-managed memory while
avoiding the performance penalties and heap fragmentation common to garbage-
collected and manually-managed heaps.® It proposes that dynamically-allocated

3Garbage collection is, in particular, ill-suited for real-time systems.

99

storage should be organized as a stack of heaps, called regions,* and that new
objects should be allocated into a region containing objects of comparable life-
times. (Regions often, but not always, have lexically-scoped lifetimes.) When
program execution proceeds to a point where no datum from a particular
region will be required again, the contents of that entire region are deallocated
at once. If region lifetimes are lexically scoped, then the end result is effective
compile-time management of dynamic heap memory.

The central problem is that manual region annotations suffer in many of the
same ways as other program annotations: they are tedious to apply, they can be
verbose, and it can be difficult for a region checker to give useful feedback in
the case of incorrect annotations. (If there is no region checker, then incorrect
region annotations will have the same result as accessing memory that has been
freed in a C program.) Therefore, we would like some way to infer correct
region annotations. It is not enough, however, for region annotations to be
correct. We would also like regions that minimize the amount of wasted heap
space. That is, we would like the smallest reasonable region lifetimes. Effect
systems can help identify when data are no longer necessary and eliminate
dangling reference bugs by ensuring that references to data do not flow to
longer-lived regions.

The Cyclone language (Grossman et al. 2002) added region-based memory
management and automatic region inference (among many other useful fea-
tures) to a C-like language. Boyapati et al. (2003) used an explicit type system
based on ownership types to enable region-based memory management in
Java programs. Chin et al. (2004) presented a polymorphic region inference
algorithm for lexically-scoped regions in a subset of Java, targeting applica-
tions in real-time Java. The Jreg system, due to Cherem and Rugina (2004),
extends full Java with support for automatic region-based memory manage-
ment. Cherem and Rugina (2006) also developed Jfree, a system to identify and
exploit opportunities for compile-time deallocation of individual objects.

Escape analysis and object inlining transformations are closely related to
region inference. Escape analysis identifies objects whose lifetimes are bounded
by the lifetime of the method in which they were created in order to enable
allocating some heap objects on the stack or eliminating synchronization oper-
ations on certain objects. Object inlining transformations identify contained
objects whose lifetime is bounded by the lifetime of a containing object in order

“Note that this usage is subtly different from the original definition of “region” in the
context of effect systems, as a set of locations that might be aliased.

100

to subsume the fields and methods of contained objects into their containers.

Choi et al. (1999) present a subset-based dataflow analysis framework (with
both flow-sensitive and flow-insensitive instantiations) to identify objects that
do not escape the method or thread in which they were constructed. Vivien
and Rinard (2001) developed an incrementalized version of a flow- and context-
sensitive points-to and escape analysis.

Dolby and Chien (2000) presented an object inlining transformation and
its evaluation; since it is based on value flow, it could be cast as a type infer-
ence problem.’ Laud (2001) developed a slightly different definition of object
inlinability. Lhotdk and Hendren (2002) compare the definition of inlinability
presented by Dolby and Chien with that of Laud and analyze dynamic traces
of Java programs in order to identify opportunities for object inlining.

Lucassen and Gifford’s 1988 paper on polymorphic effect systems focused
on identifying scheduling constraints for execution of implicitly-parallel pro-
grams, as did Talpin and Jouvelot (1992), who presented a polymorphic type,
region, and effect reconstruction algorithm. A related problem is ensuring
that explicitly-parallel programs are free of race conditions. Effect systems and
approaches inspired by effect systems have also been applied to this end.

Boyapati and Rinard (2001) presented a technique combining an owner-
ship type system with effects for race- and deadlock-free execution of Java
programs.® Choi et al. (2002) extend earlier work on escape analysis in order to
precisely detect races in explicitly-parallel Java programs. Flanagan and Qadeer
(2003) developed a type and effect system for identifying atomic methods, or
those that can be assumed to execute serially (without interference from thread
interleavings); they also argue that identifying atomicity is a better criterion
for safe parallel executions than identifying the absence of data races. More
recently, Naik, Aiken, and Whaley (2006) presented a system for static race
detection based on the combination of effects and object-sensitive points-to
analysis (Milanova et al. 2005).

Another notable application for effect systems is as a basis for other tools or
analyses: whether automatically providing annotations for a model checker or
specification language, or as the foundation for other interprocedural analyses.
Salcianu and Rinard uses pointer and effects inference to identify pure methods
(using “pure” in the sense of Leavens et al.); they do so by masking writes to
this exhibited by a constructor. Cherem and Rugina (2007) developed a

5See also Dolby (1997) and Dolby and Chien (1998).
6See also Boyapati et al. (2002).

101

parameterized framework for compact effect signatures, which allows clients
of effect annotations to trade precision for annotation size.

Skalka, Smith, and Horn (2005) present an effect system and inference al-
gorithm for abstract interpretation of Featherweight Java (Igarashi et al. 1999).
Their approach infers history effects or trace effects, which are labeled transition
systems that approximate run-time traces of program behavior and can be
used for model checking. They also show that their approach allows mod-
ular extensions to the base language (e.g. adding support for exceptions) by
postprocessing effects annotations.

The natural compatibility of effects and objects has led to a great deal of
excellent work. As we discussed in Section 4.2, Greenhouse and Boyland
(1999) devised an idiomatic, object-oriented treatment of regions and effects,
but did not provide an inference algorithm. Bierman and Parkinson (2003);
Bierman et al. (2003) extended the work of Greenhouse and Boyland with a
semantic treatment of effects and an effects inference algorithm for a subset
of Java. However, their work left region annotations as the responsibility of
the programmer. Skalka (2005), building on earlier work (Skalka et al. 2005),
provides a detailed explanation of the interaction of trace effects and effect
inference with object-oriented language features.

Given a notion of effects, it is possible to talk about the purity of functions.
Barnett and Naumann (2004) formulate a system of invariants on object state
that holds under ownership (in which state is encapsulated) and friendship (in
which state is shared); their system identifies invariant dependence on states
while ours provides an overapproximation of independence. Barnett et al.
(2004) present several definitions of purity in the context of object-language
methods that may appear in checkable specifications: observational purity
(which admits memoization), strong purity (the classic definition), and weak
purity (in which methods may modify newly-allocated state). Salcianu and
Rinard (2005) present an analysis to identify weakly-pure methods. Barnett
et al. (2007) extend the Salcianu-Rinard analysis to support iterators and the
additional features, such as pass-by-reference, of the .NET runtime.

Our contributions — quiescing fields, initialization effects, and degrees
of purity — are intended to enhance the expressivity and precision of effect
systems and purity analyses and thus are orthogonal to the specific effects
system or purity analysis being used. Our contributions could easily be adapted
to benefit other effects systems; in fact, features of other systems could readily
be added to the effects system of Section 4.3: for example, the parameter-leaking
and borrowing effects of Cherem and Rugina could model information flow

102

public String foo() {
// exhibits INIT effects on fields of s
StringBuffer s = new StringBuffer("foo");

// exhibits WRITE effects on fields of s
s.append("bar") ;

// exhibits INIT effects on fields of a new String
return s.toString();

Figure 4.5: Example of a pure method that is not identified as such by our
simple system

more accurately; one could use the results of a field uniqueness analysis, like
that of Ghemawat et al. (2000) or Ma and Foster (2007) in order to automatically
place unshared annotations. Conversely, we believe that initialization effects,
quiescing fields, and external purity can be introduced to an extant effect
system as crosscutting concerns.

As an example, we compare our pure-method inference to analyses built
on a more expressive effect system. Our analysis can be used to identify the
subset of weakly-pure methods that only exhibit iN1T effects on newly-allocated
objects simply by masking INIT effects; other analyses, like Salcianu and Rinard
(2005) and Barnett et al. (2007) can identify a broader range of weakly pure
methods. Because they track points-to information precisely, their effects
system will identify some pure methods that our technique (of masking INIT
effects) will not: for example, a method like the one in Figure 4.5, which
modifies a newly-created object after the dynamic lifetime of its constructor,
is pure by the Leavens et al. definition, but will not be identified as pure by
the rules we present in Section 4.6. However, because we track initialization
effects separately from writes, we are able to readily identify quiescing fields;
in addition, our notion of degrees of purity can aid client analyses, program
understanding, and local reasoning by identifying methods whose effects are
confined to their receiver object. In any case, our contributions could easily be
added to such a system.

103

Inferring eventual immutablity

Porat et al. (2000) developed a flow-sensitive analysis for identifying that static
fields — as well as the objects to which they refer — were immutable, even if the
fields were not declared as final. In contrast, our approach merely identifies
that the value of a field (i.e. a reference) will not change after the dynamic
lifetime of its containing object’s constructor; the state of an object referred
to by a quiescing field may still change. Identifying unchanging references
and identifying immutable objects represent complementary and orthogonal
problems.

A different, but related, problem is that of checking and identifying refer-
ence immutability, which indicates that an object will not be modified via a
particular reference. Tschantz and Ernst (2005) extended the Java language
with type qualifiers to identify readonly references, which cannot be used to
modify their referent,” and assignable fields, which are used for caching and may
thus be written to via readonly methods. Zibin et al. (2007) built upon this work
by using Java generics to provide object and reference immutability without
syntax or type-system extensions. Finally, Quinonez et al. (2008) provided
a tool and technique for precisely inferring readonly references in unanno-
tated code. Reference immutability, like object immutability, is orthogonal to
identifying quiescing fields.

Most directly related to our concept of quiescing fields is the stationary
fields analysis of Unkel and Lam (2008), which we shall focus on in the remain-
der of this review. Unkel and Lam use a flow- and context-sensitive pointer
analysis to identify fields for whom every dynamic read can be statically guar-
anteed to come after every dynamic write.

While both stationary fields and quiescing fields are capable of identifying
eventually-immutable fields that are not declared final, and both identify
about half of all fields in some set of realistic Java programs as eventually-
immutable, there are several interesting differences between our approaches.
First, our approach is substantially more lightweight: we use a flow- and context-
insensitive analysis that exhibits linear time complexity and runs in seconds;
their approach uses a flow- and context-sensitive analysis that takes between
7 and 106 minutes to analyze a realistic Java program. However, while our
approach simply identifies quiescing fields, their approach identifies stationary
fields and can also track their referents with greater precision. Both approaches

7This is similar to const pointers in C++.

104

can be used to improve the precision of effects and interprocedural def-use
analyses; theirs is better-suited for also improving the precision of points-to
analyses.

Perhaps more interestingly, though, is that the definitions of quiescing and
stationary fields are subtly incompatible: while it seems most likely that the
intersection of the sets of quiescing and stationary fields for any given program
would be large, there are quiescing fields that are not stationary fields (e.g. those
that might be read in the constructor before a write), and there are stationary
fields that are not quiescing fields (e.g. those that are written after the dynamic
lifetime of a constructor, but before any use of an object). We suspect that
investigating the relationship between these two kinds of fields — and whether
or not quiescing fields annotations could be used to improve the speed of
stationary fields analysis — presents a fruitful avenue for future work.

5 RUNTIME EVALUATION AND SUPPORT

Philosophy is perfectly right in saying that life must be understood
backwards. But then one forgets the other clause — that it must be
lived forwards. The more one thinks through this clause, the more
one concludes that life in temporality never becomes properly un-
derstandable, simply because never at any time does one get perfect
repose to take a stance: backwards.

— SOREN KIERKEGAARD (1843, TRANS. HONG)

We're not talking about the game. We're talking about practice.

— ALLEN IVERSON (2004)

In Chapter 2, we presented object-level parallelism, a measure of implicit
parallelism in object-oriented programs, and PIMA, a programming model
designed to exploit oLP. In Chapter 4, we presented a type-and-effect system
and analyses to identify mostly-functional behavior in Java programs: namely,
quiescing fields and instance methods whose computational effects are con-
fined to their receiver objects. (The analyses of Chapter 4 were implemented in
our DIMPLE " framework, which we described in Chapter 3.) We also evaluated
these analyses both in terms of their properties on static program texts and, in
the case of the quiescing fields analysis, in terms of what it could tell us about
dynamic program executions.

Therefore, we have a way to structure parallel programs and coordinate
between parallel tasks, and a mechanism for identifying that two program
fragments are noninterfering. These two are are necessary but not sufficient
prerequisites for making the case that a particular kind of parallelism is manifest
in realistic program executions, let alone for transforming serial programs
into parallel ones. In this chapter, we characterize actual executions of the
DaCapo benchmarks (Blackburn et al. 2006) under the Jikes RVM (Alpern et al.
1999, 2005) in order to answer questions about the actual dynamic behavior of
programs and their implications for oLP: how much time do programs spend
in externally-pure and externally-read-only methods? How many individual
externally-pure or externally-read-only method invocations are long enough to
constitute plausible parallel tasks? We present empirical results addressing
these two questions and also consider the question of runtime support for
exploiting oLp, which we first mentioned in Chapter 2: What sort of virtual

105

106

machine modifications and extensions would we need to exploit this implicit
parallelism?

The remainder of this chapter contains a description of our evaluation
methodology (Section 5.1)and an evaluation of typical externally-pure and
externally-read-only methods as suitable parallel tasks (Section 5.2). We then
discuss the requirements for implementing virtual machine support for ex-
ploiting oLP (Section 5.3) before reviewing some of the most relevant related
work on characterizing implicit parallelism in workloads.

5.1 EXPERIMENTAL ENVIRONMENT & EVALUATION METHODOLOGY

It is difficult to observe and characterize program behavior at a fine granularity,
and any approach involves some compromises. Interrupting a program in order
to inspect its state is likely to perturb its execution — especially on contempo-
rary microprocessors, in which hundreds of instructions may be in flight at any
given time. Instrumenting programs to generate traces allows tool or analysis
designers to post-process information about program behavior in arbitrarily
complex ways, but can also perturb executions, incurs nontrivial overheads,
and can generate an enormous amount of data in a very short period. Running
programs under simulation is flexible and can avoid observation effects since
the behavior of the simulator may not be visible to the executed program, but
simulation may be prohibitively slow to evaluate realistic programs. Before
we introduce our approach for evaluating and characterizing the workloads
presented by the DaCapo benchmarks, which is based on dynamic instru-
mentation and virtualized execution, we will briefly review some standard
approaches. There is a great deal of excellent work on characterizing program
performance and building tools to aid the same; our focus in this section is
merely on reviewing the fundamental mechanisms and techniques for doing
SO.

Background

Simulation has long been an attractive option for performance projection
(Lucas, Jr. 1971), or evaluating the performance impact of changing certain
parameters of a system without actually implementing that system. In many
domains, this was borne of necessity: it would be unfeasible, for example, to
evaluate a new cache replacement policy by designing and fabricating a new
microprocessor! More recently, simulation has been profitably applied not only

107

to evaluating the parameters of systems and hardware but to evaluating and
debugging application programs; Engblom et al. (2006) provide one example
of using a commercial full-system simulator to evaluate and test software that
is designed to run on embedded systems. The advantage to using simulation to
evaluate application software is that it is possible to observe an application (and
possibly also the virtual machine or operating system) in a way that is transpar-
ent to that application, because the simulator controls the application’s view of
the world. However, simulated execution can be orders of magnitude slower
than execution on real hardware and thus may be unsuitable for evaluating
entire executions of realistic programs.

Sample-based profilers, at their most basic, interrupt programs at specified
intervals and inspect the stack; in so doing, they are able to provide a probabilis-
tic estimate of which methods account for the highest percentage of program
executions. Sample-based profiling is simple to implement, but it only provides
coarse, probabilistic information about an entire program execution in the
aggregate: it cannot describe how long individual method activations were atop
the stack, for example, and thus loses precision since a method may be very
expensive in certain contexts but not in others. Graham et al. (1982) extend
the classic sampling concept with the gprof tool, which records call-graph
information at the entry to each method so that it can ascribe inclusive timings
to methods. Put another way, gprof can regard the time spent in callees of m
as time spent in m. Instead of sampling when a timer quantum is exceeded, it
is also possible to sample program execution when some quantum of another
resource is exceeded, for example, when some number of floating-point excep-
tions or page faults has passed, as in Hall and Goldberg (1993). This approach
has proven useful for full-system profiling — that is, including the application,
the libraries or runtime, and the operating system kernel — Mousa et al. (2007)
provide an example of this technique.

Other profilers do not sample program behavior and instead exclusively
instrument programs to generate a trace of relevant events, stop and start
timers, and count the number of times a high-level language statement or
procedure is executed. Some such profilers insert event counters on basic
blocks and branches; these are able to ascribe execution counts to control-
flow graph edges or acyclic intraprocedural paths (Hall 1992; Ball and Larus
1992, 1996). Ammons et al. (1997) combine instrumentation with the idea of
measuring resources other than time and with the concepts of flow- and context-
sensitivity; their work uses hardware counters to ascribe microarchitectural
events (such as cache misses or branch mispredictions) to program paths when

108

executed in a particular context.

As we have seen, program instrumentation is used by basic block, call
graph, and edge profilers. Program instrumentation can also be used to update
counters, start and stop timers, and generate traces containing arbitrary events
of interest. Of course, the overhead of executing instrumentation code may alter
the performance characteristics of the program; furthermore, a trace generated
of events that are deemed a priori potentially interesting may be prohibitively
large. While instrumentation may be inserted statically — whether manually
by programmers or automatically by program transformations — both the
overheads of executing instrumentation and the quantity of traced events can
be reduced by inserting and removing instrumentation dynamically, as shown
by Hollingsworth et al. (1994). The dynamic instrumentation approach has
been successful in problem domains ranging from automatic performance
diagnosis of parallel programs (Miller et al. 1995) to low-overhead application
debugging (Zhao et al. 2008).

Our approach

Dynamic instrumentation also forms the basis of our approach for characteriz-
ing the method executions in the DaCapo benchmarks. (Note that we used
static instrumentation — albeit generated by a just-in-time compiler! — to
characterize the dynamic prevalence of quiescing fields in Section 4.5.) Because
we are running DaCapo under the Jikes RVM, a metacircular managed runtime
that compiles the application code immediately before execution, along with
standard library classes and substantial portion of its own support code, it is
possible to examine the impact of code that is traditionally unavailable, like
the allocator, garbage collector, and just-in-time compiler itself. However, this
flexibility comes at a price: we do not have a traditional executable with debug
symbols and routines in fixed locations and must therefore reconstruct a great
deal of high-level information from the program’s execution as it happens.

In order to do this, we built a specialized profiler on top of the Pin dynamic
instrumentation framework (Luk et al. 2005). Pin combines aspects of dynamic
instrumentation and simulation: it is able to insert arbitrary code specified in so-
called analysis routines at points identified by instrumentation routines, and it
does so by executing the application under a virtualized execution environment,
dynamically recompiling the application with the analysis routines inserted
in the application code. A program extending Pin by providing analysis and
instrumentation routines is called a pintool.

109

23 e T T

Per-thread
simulated stacks h u i u h u i |

Per-thread 10245]7683 [12690[2130 103524312 [20010(62806
34524 892 e 1483 804

timestamps

Each simulated

call address timestamp of call old stack pointer
stack element

Figure 5.1: Per-thread state maintained by instrumentation code

The main goal of our pintool is to generate, for each method, aggregate
statistics about the duration of its invocations: its invocation count, the dura-
tion of its shortest and longest invocations, and estimates for the mean and
variance parameters for the distribution of invocation lengths. In order to
do this, our pintool reads traces of program events and simulates program
execution, maintaining some abstracted state for each virtual machine thread.
(Note that a Java virtual machine may create many threads even while execut-
ing a single-threaded program — for example, the garbage collector and other
runtime support code may run in a separate thread.)

We say that the state maintained by our pintool is abstract because it does
not contain all of the state in a concrete execution: it does not track the values of
architected registers, memory loads and stores, or the details of intraprocedural
control flow, for example. Instead, it keeps for each thread a representation
of the call stack, which records which methods (and try blocks) are currently
executing, and a timestamp counter, which records the number of instructions
executed in that thread. The values we track, however, are not abstract; that
is, we know exactly how many application instructions have executed in each
thread as well as the precise addresses of each method on the stack at a given
time. Figure 5.1 shows the state that our pintool maintains for each thread.

In order to collect this information, we instrument every basic block in the
Jikes RVM boot image and in all dynamically-compiled application and library
code. (Because Pin handles dynamically-generated and self-modifying code,
our pintool is able to soundly treat code that is recompiled by the virtual ma-

110

Blocks with an intra- Blocks ending with a Blocks ending with

procedural jump procedure call areturn
ts[TID] += 3 ts[TID] += 5 ts[TID] += 4
ar = (ts[TID], L811) (ots, addr) =
¢s[TID].push(ar) ¢s[TID].pop()
ol Yoeax, (tech) tm = ts[TID] - ots
oCl, %
ine L8 pushl %ebp stats[addr].add(tm)
movl %esp, %ebp
pushl %ebx addl $20, %esp
subl $4, %esp popl %ebx
call L811 leave
ret

Figure 5.2: Example instrumentation code (gray) inserted for three kinds of
basic blocks (white). (Old stack pointers are omitted from the simulated stack
in this illustration.)

chine’s adaptive optimization system.) Every basic block b is instrumented with
code that increments the thread-specific timestamp counter for the currently-
executing virtual machine thread by the number of instructions in b. We then
treat different kinds of basic blocks in different ways:

. Basic blocks that end with intraprocedural control-flow (say, for example, a
simple branch) are not instrumented any further. That is, each such block is
only instrumented with the timestamp counter increment;

. Basic blocks that end with a procedure call instruction (whether calling an
actual Java method, a subroutine, or entering a try block) are also instrumented
with code to record an abstracted activation record, consisting of the called
address, the current thread-specific timestamp (taking into account the number
of instructions in this block), and the current stack pointer value;

. Basic blocks that end with a return instruction are instrumented with code that
updates the stack, determines which method (or subroutine, try block, etc.)
the program is leaving, and updates the aggregate statistics for that method.

We give examples of each of these three kinds of basic blocks in Figure 5.2.
We are thus able to keep a running count of the number of calls for each
method, as well as the minimum and maximum number of instructions exe-
cuted in a single invocation of each method. We also keep updated estimates
of the mean and variance for distribution of invocation durations for each

111

method, using a technique due to West (1979). Finally, we modified the Jikes
RVM to dump out a symbol table at the end of program; therefore, we are
able to map call addresses to Java methods — and to the results of our purity
analysis from Chapter 4.

5.2 METHOD INVOCATIONS AS POTENTIAL TASKS

In order to profitably execute a method asynchronously, we must be able to
make several guarantees about its behavior:

. It must not interfere with other methods that may execute at the same time;

. It must represent a large enough computation to justify the communication
costs of delegating it to another thread; and

. There must be enough slack between the method’s invocation and the point in
the dynamic execution when its value will be required.

The first criterion is a safety consideration, but it is also a performance consider-
ation: we must guarantee safety, either statically (e.g. by analysis), dynamically
(e.g. by checking or software transactional memory), or by some combination of
static and dynamic approaches. However, dynamic approaches for guarantee-
ing noninterference typically incur greater overheads in the event of conflicts,
so we would like to limit the likelihood of conflict as much as possible.

We use the purity analysis from Chapter 4 as an overapproximation of
noninterference; we note that externally-pure and externally-read only methods
will not interfere with one another. (Although we do not do so, it is possible
to statically identify impure methods that will not interfere.) In this section,
we focus on the second criterion above by characterizing the durations of
externally-pure, externally-read only, and impure method invocations; we
leave identifying slack as an open question for future work.

Amdahl’s law implies that it is not profitable to parallelize infrequently-
executed code paths. In realistic programs, methods that are executed only
once or merely a few times are often not characteristic of the majority of
execution. As a consequence, we restrict our investigation to methods that
are executed relatively more frequently: for each benchmark, we first identify
those methods that are invoked frequently enough to account for more than
one-one-hundredth of a percent of all method invocations. Table 5.1 lists the
number of methods we examined for each benchmark.

112

Externally
Benchmark Pure Read-only Impure
antlr 218 258 1245
bloat 99 105 659
eclipse 65 73 2157
jython 230 242 1044
luindex 156 173 928
pmd 34 36 461

Table 5.1: Counts of methods that represent more than 0.01% of total method
invocations.

Because we are interested in finding relatively fine-grained parallel tasks
to execute on chip multiprocessors, our ideal task size is large enough so
that it will not be dominated by communication times (that is, accesses to a
shared L2 or fast L3 cache), but not so large that the task is likely to cause
destructive interference with concurrently executing code on a neighboring
core. While different processors vary widely, we assume that task sizes of
around one hundred instructions represent the smallest plausibly justifiable
task on a processor with realistic intercore communication latencies. (This
would correspond to a — very fast — latency of twenty or thirty cycles to access
the L2 cache.)

Figures 5.3—5.8 present cumulative distribution plots of the mean number
of dynamic instructions executed in individual invocations of each frequently-
invoked method; note that the x-axis on each graph is scaled to the quantile
function. Recall that we define a frequently-invoked method as one that ac-
counts for at least one-one-hundredth of a percent of all method invocations.
The impure methods for each benchmark include all methods we identified as
pure and all methods that we did not analyze, including those methods that
implement runtime support functionality (e.g. memory management and the
adaptive optimization system) in the Jikes RVM.

For almost all of the benchmarks we analyzed, more than 50% of frequently
executed, externally-pure and externally read-only methods have mean dura-
tions of approximately 100 instructions or more. (pmd is the notable exception.)
Furthermore, a significant number of externally-pure and externally-read only
methods are likely to execute for several hundred instructions or more. The
bottom quartile of each plot typically features very short methods — we note

113

Mean invocation time

Figure 5.3: Mean method invocation durations for

100000

10000

1000

100

10

s ¥R R KRR B B
R 93535355 o &
=3 S43ds & a
(= - N n N & . a
[[| [[L1 [[[R [
Externally pure Externally read—only Impure
oo © vwo
®
yﬁéﬂimo’
& & s
L T T 11 L L T T T 1 L L T T T 1 L
® 8 28888 }® B 88 R B R
=2 33333 & & S 2 838338 © &
= oS wn O wn o QN O (=2 o wn O wn o D
PERKRK& &8 eLR8KR& & 8&

Cumulative distribution

methods in the ant1lr benchmark.

Mean invocation time

100000

10000

1000

100

10

1

~ 0.1%

- 1.0%
- 10.0%
- 25.0%
- 50.0%
- 75.0%
- 90.0%
= 99.0%
= 99.9%

all frequently-executed

Externally pure

Externally read—only

10.0%
25.0%
50.0%
75.0%
90.0%

99.0%

99.9%

Cumulative distribution

0.1%

1.0%

10.0%
25.0%
50.0%
75.0%
90.0%

99.0%

99.9%

Figure 5.4: Mean method invocation durations for all frequently-executed
methods in the bloat benchmark.

114

R X R
2R 33533533 & &
= e S w3 v o xR
(= - N 0N N O a
I T N N T N R N | T T T N N T R B T T T T N R B
Externally pure Externally read—only Impure
o
100000 -
Q)
g 10000 - .
B onoo (X'oo
c o o
2 1000 & £
$ S
< § i
9 » s
<] Py P
z 100 e P
£ o &
c é &
« S 8
b5 8
s 10
of of F
- - —
14 o 000 o oo aoume -
T T T T T T T 1T T T T T T T T 1 T T T T T T T 1
R ogsfer ¥ X R 2R vy
= 9 S S 9 9 g S & - < S8 & &% S &
o - o wn O wn o N N (=] - o wn O wn o N N
S8 RN & 8 eLRR& &8

Cumulative distribution

Figure 5.5: Mean method invocation durations for all frequently-executed
methods in the eclipse benchmark.

o 2R ® R
R &35 353535 & &
- < S W O W o [)
(=2 - N n N O a &
[[R L1

Externally pure Externally read—only Impure
o ©
100000 o -
v g
£ 10000 ax0® R
=
5 4 4
.2
= 1000
o
o
>
1S 100
c
«©
U o o
= 10
& r -
1 - o o000 © o000 o oo
1 T 1T 1 11 T 1T T T T T T 11T T T T T T T T T T T 1T
EE-3 XX R 8 X X RN XX R LR X R
= 2 8% 3%3%% 3§ & T2 3358538338 3§ &
o - o wn O wn o () N o - o O wn o N [}
ELRRER & 8& SLRRK &7

Figure 5.6: Mean method invocation durations for all frequently-executed

Cumulative distribution

methods in the jython benchmark.

115

Mean invocation time

100000

10000

1000

100

e ® R R 2 ®
g g EE8E888 % %
= < S w»w S wn oS P =N
o - - N w o~ o () (5}
I Y T T Y T N T N N TN N A T TN Y N TN N T NN N
Externally pure Externally read—only Impure
000
P
00 a0 o
® -
@ K
c— c— J—
1 T o1 1 11 T 17 T T T T T 1T T T T T T T T T T T 1T
2 8 2Ly 8 ® 8 2R LR OB R
= < S 9 9 9 9o o o - S S o S 9 S &
=] - S n O wn o [[\ =] - S n O wn o N [}
- N 0N N (=} (=) - N N N & (=) [}

Cumulative distribution

Figure 5.7: Mean method invocation durations for all frequently-executed
methods in the 1uindex benchmark.

Mean invocation time

100000

10000

1000

100

10

PN R R
2 g 88888 £ 7
= < S v S w9 [N
o - - N 0N N & [} (=}
L1 [R R [R | L1 T R N | L1 L1
Externally pure Externally read—only Impure
o
o
/
000 © 00°°
o 00
& e
of o
@
1 T T T 1 T T 1 T T T 1 T T 1 T T T 1 1
2R g sesr R’ 8 2 8 2 R LR ¥R
= < S o 9 9 o [=T-N - Q S S & & o S &
=] - S wn o n o [[y =} - S n O wn o [} [
- N w o~ o (=) [} - N n N [} (=)}

Cumulative distribution

Figure 5.8: Mean method invocation durations for all methods frequently-
executed in the pmd benchmark.

116

that short methods that are executed very frequently are likely to be inlined by
the VM and thus will not appear at all — while the graphs for externally-pure
and externally-read only methods taper off around methods of a few hundred
instructions.

5.3 RUNTIME SUPPORT

Recall the main goals of runtime support for the piMmA model, as we sketched
them in Chapter 2:

. The runtime must be able to demarcate objects,

. The runtime must be able to delegate methods on demarcated objects to run
asynchronously on other delegate threads, and

. The runtime must be able to synchronize between a delegate thread and the
main thread when the main thread requires a value from a demarcated object.

We proposed using Java’s virtual dispatch to maintain two copies of instance
method bodies: one for normal execution, when an object is not demarcated,
and one for when it is. The responsibilities of the method body for demarcated
execution depend on the kind of method: methods that update object state
but do not return a value require a method that proxies the invocation to an
appropriate delegate thread; methods that return a value (ideally depending
on the object’s state) require a method that blocks until all other pending
operations on this demarcated object have completed. (Refer to Figures 2.5,
2.6, and 2.7.)

While we will not evaluate an implementation of runtime support for PiMA
and oLPp, we can identify some additional goals that it should meet. Put another
way, now that we have characterized the sorts of methods that we would like
to be executing asynchronously on demarcated objects and examined more
carefully the environment in which they will execute, we can suggest some
additional constraints.

The first goal is related to a correctness concern. While many even very
small methods are executed out of line, an optimizing runtime environment
like the Jikes RVM may inline methods if a call site is likely to be monomorphic.
(Because most contemporary virtual machines are able to invalidate assump-
tions when necessary — e.g. due to dynamic class loading or to a new type
of receiver object reaching a call site — dynamic inlining can be even more

117

if not delegating

proxy padding for alignment,

sequence if mandated by ABI prologue method body epilogue

o 9 control returns

to caller

prologue’

Figure 5.9: A more efficient proxy implementation.

aggressive than static inlining.) As a practical consequence, this means that it
is possible for some very simple methods on a demarcated object to execute
in the wrong thread under the simple virtual function table patching scheme
we proposed in Chapter 2, so we need a scheme that will work in the face of
inlining. There are several straightforward solutions to this problem. It would
be possible to insert demarcation checks at the beginning of every compiled
method, although this would introduce some overhead in the common case.
Perhaps a better solution would be to generate a simple check at each inlined
call site that might operate on a receiver other than this, executing the proxy
code only if necessary.

The second goal is related to a performance concern: because methods —
especially the sort of methods we might be delegating — are so short-lived,
performance is crucial. We note that generating two copies of each method,
one with proxy code and one without, is likely to increase memory and cache
pressure. Instead, we propose generating both copies of the method in the
same contiguous block of memory, as in Figure 5.9. In this approach, the virtual
function table pointer either is at the location labeled 1 or 2; 1 corresponds to
execution on a (potentially) demarcated object and 2 corresponds to normal
execution. In the demarcated case, the method will execute any necessary
proxy code in the main thread before jumping to the epilogue and returning
to the caller. If the receiver object is no longer demarcated, then control
simply transfers to the instruction immediately following the second prologue
and execution proceeds as normal in the calling thread. (Note that it may be
necessary to pad the space between the delegate code so that both prologues are
properly aligned to be the targets of call instructions.) In the non-demarcated
case, execution simply proceeds normally.

118

5.4 RELATED WORK

The work described and proposed in this chapter falls into several categories:
software tools for fine-grained performance evaluation, attempts to charac-
terize latent parallelism, and efficient runtime support for concurrent object-
oriented programs. We have reviewed results related to the first category
already in this chapter (in Section 5.1) and contributions related to the third
category after we first sketched our runtime support (see Section 2.4). In the re-
mainder of this section, we will briefly review some notable efforts to establish
limits on the upper bounds of implicit parallelism.

Historically, computer architects have devoted a great deal of research
and engineering effort to understanding how much parallelism is implicit in
realistic workloads. For many years, the primary focus of this work was on
finding instruction-level parallelism (1LP) in order to motivate new advances
in superscalar processor design. In identifying a limit to the amount of 1LpP
possible, researchers also (implicitly or explicitly) identify their assumptions
about what techniques for parallelism are possible: whether register or memory
renaming, branch prediction, value prediction, etc., are available obviously
have a huge impact on what parts of a program execution can be identified
as “potentially parallel” There are many excellent results in this arena; we find
especially notable the contribution of Austin and Sohi (1992), who present a
technique for efficiently constructing dependency and dataflow graphs from
traces of program executions, thus identifying the maximum possible 1LP at
different points in a program’s execution.

More recently, following industry and research trends towards increased
thread-level parallelism, some architects have examined implicit thread-level
or task-level parallelism. This work is perhaps even more dependent on as-
sumptions than work on finding implicit 1LP, because it requires a researcher
to identify both a model that puts constraints on what a task is and how it can
be created (such as method-level parallelism or loop-body parallelism) as well
as the technical constraints and capabilities of a particular implementation.

Chen and Olukotun (1998) investigated method-level parallelism in the
context of the Hydra CMP chip; their technique is necessarily conservative
with regard to methods with unpredictable return values or extensive side
effects. Their later work on the Jrpm system Chen and Olukotun (2003) is
targeted toward parallelizing loop-bound code, not idiomatic object-oriented
programs. Their work depends on pipelining loop bodies — and thus depends,
to some extent, on the ability of the programmer to alter methods so that their

119

side effects occur in a limited portion of their execution, in order for method
executions to be overlapped.

Warg and Stenstrom (2001) conducted a limit study of speculative module-
level parallelism in Java and C. Their approach uses a method-level parallelism
model that spawns a new thread for each method invocation; it is thus targeting
slightly finer-grained parallelism than our model. Their proposal depends
specialized hardware support: specifically, they expect that aggressive value
prediction is available in order to enable speculative execution in the face of
data dependences.

6 CONCLUSIONS AND FUTURE WORK

What has been is what will be, and what has been done is what will
be done, and there is nothing new under the sun.

Is there a thing of which it is said, see, this is new? It has been
already in the ages before us.

— ECCLESIASTES 1:9—10 (ESV)

Because of the many attempts to connect the past with the future
one might be inclined to call this an Apollonian period. But the
Sfury with which addicts of various schools fight for their theories
presents rather a Dionysian aspect.

— ARNOLD SCHOENBERG (1948)

The thesis of this dissertation is that real-world client applications exhibit
implicit thread-level parallelism because methods on distinct objects are often
independent; furthermore, it is possible to identify this object-level parallelism
statically via type-based program analysis and exploit it with lightweight run-
time support. In an effort to argue this thesis, we have presented several
contributions:

. Object-level parallelism (OLP), a measure of potential implicit parallelism anal-
ogous to instruction-level parallelism, and the PIMA programming model (in
Chapter 2);

. The piMPLE™ declarative analysis framework for flexible, interactive, and scal-
able analysis of Java bytecode programs (in Chapter 3),

. A novel object-oriented type-and-effect system, inference rules, and client
analyses (implemented in DIMPLE") to identify a large class of run-time con-
stant fields and object instance methods that are good candidates for parallel
execution (in Chapter 4); and

. A characterization of dynamic opportunities to exploit latent oLP in Java pro-
grams (in Chapter 5).

While we believe that these contributions are significant, we also believe
that there are several interesting avenues for future work related to and enabled
by the work described in this dissertation.

121

122

. The piMPLE™ work presents a useful environment for prototyping and execut-
ing program analyses, but it is also a vehicle for research and development in
logic programming systems. An early, unpublished version of DIMPLE" served
as a test case for published work on the Yap system’s performance on very
large datasets." Our work on DIMPLE™ has raised interesting questions about
characterizing the memory performance of tabled Prolog and the system-level
and microarchitectural impact of declarative programming with large datasets.
DIMPLE " could also be extended as a tool, perhaps through integration with
automated reasoning systems.

. The analyses of Chapter 4 likely have many applications beyond finding po-
tential parallel tasks. We are interested in improving the precision of these
analyses by incorporating them into more expressive effects systems and in find-
ing new applications for them in software engineering, memory performance,
and program understanding — to name a few areas.

. Our results in Chapter 5 indicate that many of the methods that are invoked
frequently in executions of these Java programs are likely to execute for long
enough to justify asynchronous dispatch (and its prerequisite, intercore com-
munication) on realistic processors. However, future work could present a
more comprehensive limit study. There are research challenges involved in
identifying exactly how to demarcate parts of a program trace into potential
parallel tasks and obvious engineering challenges in managing and making
sense of massive quantities of trace data.

. Additionally, we note that at least two improvements are likely to have a positive
impact on the number of methods that represent realistic parallel tasks: (1) A
more aggressive static analysis that could identify more methods as externally-
pure or read-only, would allow us to identify some methods that we currently
regard as impure — and which, given our results, typically have longer mean
runtimes — are actually unlikely to interfere with one another; and (2) More so-
Pphisticated runtime support that could enable us to execute even some impure
methods asynchronously.

. We have laid the analysis and programming-model foundations for an auto-
mated, round-trip system for finding and exploiting implicit oLp, which would
include runtime support for asynchronous execution and static or dynamic

*See Costa (2007) and Costa, Sagonas, and Lopes (2007)

123

cost modeling to estimate profitability. Any one of these tasks is probably a
worthy research program by itself.

Our initial goal in conducting this work was to bring some of the benefits of
functional and declarative languages to “mainstream” object-oriented software;
to bridge the gap between some good old ideas and a contemporary language
climate that is not amenable — or even hospitable — to them. In this way, our
work is analogous to type-based analysis, which imposes a parallel, implicit
type system that encodes an analysis problem onto a language — and which can
be applied profitably even to untyped languages. Even though many aspects
of the Java language (and extant Java software) are hostile to declarative-style
concurrency, we believe we have shown that it is possible to find and exploit
implicit parallelism in realistic Java programs.

However, we hope that the next generation of programmers will not be
fully employed finding parallelism in yesterday’s bytecodes. Instead, we expect
that programs will eventually be written in languages that make pervasive,
aggressive concurrency possible. We believe that such languages will need
to account for a landscape in which computers have a large number of cpus,
each with several cores or threads. Therefore, they must make explicit concur-
rency easier (by imposing mostly-functional constraints on code, enforcing
modularity, and limiting sharing) and implicit concurrency possible (by being
amenable to aggressive program analysis). We are fairly certain that the most
fruitful future work growing out of this dissertation will focus upon applying
the lessons of scheduling serial code to run as parallel tasks to the problem of
finding a way to express programs in a parallel tomorrow.

A CONVENTIONS

This document employs many naming and typographical conventions in order
to allow a clearer presentation of the material. In this chapter, we describe the
conventions that apply throughout the document; locally-applicable conven-
tions will be introduced when they appear.

A.1 NAMING CONVENTIONS

When we discuss Java programs at the source or intermediate representation
level, we will deal with entities in several different domains. In order to simplify
the presentation of analysis rules or properties of Java programs, we will name
metavariables according to certain conventions. For example, a variable begin-
ning with c will typically range over classes; C will denote the set of all classes.
Table A.1 shows the set of domains and metavariable naming conventions.

Metavariable Domain Domain description

c,d, K € Class Java classes
e € Exp Expressions
h € Heap Heap storage; field or array element refer-
ences
k € Imm Constant or immediate values
Lxy € Local Local variables
m € Method Method bodies
n,v € Name Names
P € Param Parameter indices (i.e. natural numbers for

explicit parameters or this for the implicit
parameter in instance methods)
s € Stmt Statements
t,T € Type Types

Table A.1: Conventions for metavariable domains

125

126

public class Point {
private int x; // this is a discrete point
private int y;

public Point(int x, int y) { /* ... */ }

public int getX() { return x; }
public int getY() { return y;

Figure A.1: An example Java program listing

member (X, [XIT]).
member (X, [_|T]) :- member(X,T).

Figure A.2: An example Prolog program listing

A.2 TYPOGRAPHICAL CONVENTIONS

We will use emphasis to denote inline definitions. Longer definitions, or those
that will be cross-referenced, will be given in numbered paragraphs like the
following:

Definition A.1 A numbered definition defines a term and provides a number
for future references in the text.

When referring inline to programming language entities — including classes,
methods, or keywords — or to external executable programs, we will use a
typewriter face to set the term. For example, we might refer to the String
class in the java.lang package, to the jsr Java bytecode instruction, or to the
UNIX 1s command. When presenting Java or Prolog source listings, we will
use the conventions established in Figure A.1 and Figure A.2. Note also that,
as in Figure A.1, we will often elide unimportant or obvious parts of program
listings, and we will typically denote such an elision by placing an ellipsis within
a comment. We use the standard nomenclature to refer to Prolog structures;

127

we will refer to a structure named foo of arity 2 as foo/2.

B RELATIONS IN THE DIMPLE IR

addExpr (L1,L2) Represents integer or floating-point addition with operands
L1 and L2.

analyzed (M) Indicates that method M has been processed by the piIMPLE™
front-end. This relation is useful because it lets analysis designers develop
analyses that correctly treat open programs.

andExpr (L1,L2) Represents logical or bitwise AND with operands L1 and L2.
arrayRef (L1,L2) Represents the L2th element of the array referred to by L1.

arraytype(T,I) Represents the type of an I-dimensional array with a base
type of T. For example, the type of a one-dimensional array of int would be
denoted as arraytype (primtype(’int’),1)

assignStmt (L1,L2) Represents an assignment from L2 to L1.
assignStmt (L1,H) Represents a load from a heap location H to a local L1.
assignStmt (H,L1) Represents a store to H of the value stored in L1.

branches(S) Indicates that statement S may branch (and not merely fall
through to the next statement).

castExpr(L,T) Represents a cast of local L to type T.

caughtExceptionRef (T) Represents the exception object of type T caught by
a particular exception handler.

cg_main (M) Represents the root of the call graph; that is, the application main
method.

class(C) Represents a member of the class domain.

class(C,N) Represents a class declaration with class ID C and name N.
cmpExpr (L1,L2) Represents a cmp bytecode with operands L1 and L2.
cmpgExpr (L1,L2) Represents a cmpg bytecode with operands L1 and L2.
cmplExpr(L1,L2) Represents a cmpl bytecode with operands L1 and L2.
concreteClass(C) Indicates that C is a concrete class.

containsStmt (M,S) Indicates that M contains S.

divExpr(L1,L2) Represents division with operands L1 and L2.

doubleConstant (V) Represents an immediate double value of V.

129

130

enterMonitorStmt (L) Represents entering the monitor for the object referred
to by L.

eqExpr(L1,L2) Represents equality test with operands L1 and L2.

exitMonitorStmt (L) Represents leaving the monitor for the object referred
to by L.

fallsThrough(S) Indicates that S may fall through to the next statement.
field(F) Represents a member of the field domain.

field decl(F, NS, T, NQ, C, Vis, instance) Represents an instance
field F of type T, declared in class C. F has short name NS, qualified name
NQ, and visibility specifier Vis.

field _decl(F, NS, T, NQ, C, Vis, static) Represents a static field F of
type T, declared in class C. F has short name NS, qualified name NQ, and visibility
specifier Vis.

final (F) Indicates that F is final.
floatConstant (V) Represents an immediate float value of V.

geExpr (L1, L2) Representsa greater-than-or-equal expression with operands
L1 and L2.

gotoStmt (S) Represents an unconditional branch to S.

gtExpr (L1, L2) Represents a strictly-greater-than expression with operands
L1 and L2.

identityStmt (L,Exp) Represents the initial (and sole) assignment to L, which
models a formal parameter. Exp is either a thisRef/2 or a parameterRef/2.

ifStmt (L,S) Represents a conditional branch.

immedExtends (C1,C2) Indicates that C1 immediately extends C2. The transi-
tive closure of this relation is the subclassing relationship.

immedImplements/2 Indicates that C1 immediately implements C2; C2 must
be an interface.

instanceFieldRef (L,F) Represents an instance field reference from the base
object referred to by L.

instance0fExpr (L,C) Represents a Java instanceof expression.

intConstant (V) Represents an immediate int value of V. (Also used to rep-
resent immediate values of narrower integral types.)

131

interface(C) Indicates that C is an interface (rather than a class).

interfaceInvokeExpr (M, [P|Ps]) Describes a method invocation of M using
interface-style dispatch.

invokeStmt (Exp) A statement invoking a method but ignoring its return
value.

leExpr(L1,L2) Represents a less-than-or-equal expression with operands L1
and L2.

lengthExpr (L) Represents an array-length inspection.
local (N) Denotes a member of the local domain.
local(L,M,T) Denotes alocal L in method M with type T.
longConstant (V) Represents an immediate 1long value of V.

1tExpr(L1,L2) Represents a strictly-less-than expression with operands L1
and L2.

mainclass(C) Indicates that C holds the main method for the program that
this database represents.

method (N) Denotes a member of the method domain.
method_decl(M, N, C, SSig, V, IS, [Mod|Mods])
mulExpr(L1,L2) Represents multiplication with operands L1 and L2.
neExpr (L1,L2) Represents inequality with operands L1 and L2.
negExpr (L) Represents unary negation.

newArrayExpr (Source,T) Represents an array allocation of base type T; Source
represents the location in the program text of this allocation.

newExpr (Source,T) Represents an object allocation of type T; Source repre-
sents the location in the program text of this allocation.

newMultiArrayExpr (Source,T) Represents a multidimensional array alloca-
tion of base type T; Source represents the location in the program text of this
allocation.

nullConstant (_) Represents null.

offset (M, V) Represents the bytecode at offset V from the beginning of method
M.

orExpr(L1,L2) Represents logical or bitwise OR with operands L1 and L2.

132

param_type (M, I,T) Indicates that parameter I of method M has type T.
parameterRef (M, I) A reference to parameter I of method M.

phiExpr([value_unit(L,S) |VUs]) A ¢p-expression, withalistof value_unit/2
structures.

primtype (Name) Describes a primitive type.

publicClass(C) Indicates that C is a public class.

reftype (Name) Describes a reference type.

remExpr (L1,L2) Represents modulus with operands L1 and L2.
returnStmt (L) Represents returning a value.

returnVoidStmt (_) Represents return from a void method.
return_type(M,T) Indicates that the return type of Mis T.

sh1Expr (L,Exp) Represents a bitwise left shift of L by Exp, which may be a
local or an integer constant.

shrExpr (L,Exp) Represents a bitwise right shift of L by Exp, which may be a
local or an integer constant.

specialInvokeExpr (M, [P|Ps]) Describes a method invocation of M using
special dispatch (that is, static dispatch for an instance method).

staticFieldRef (F) Represents a static field reference.

staticInvokeExpr (M, [P|Ps]) Describes a method invocation of M using
static dispatch.

stmt (S,SStruct) Represents a statement of SStruct at program counter S.
stmtContainedBy (S,M) Indicates that S is contained in M.

stmt_offset(S, offset(M,V)) Indicates the offset of S in M.
stringConstant (Val) Describes a string constant.

subExpr (L1,L2) Represents integer or floating-point subtraction with operands
L1 and L2.

subsig(SSig) Represents a method subsignature.
succ(S1,S2) Indicates that S2 may follow S1.
thisRef (M, T) Represents a reference to this in M.

throwStmt (L) Represents a throw statement.

133

type(void) Represents void.
unit (S) Represents a member of the statement domain.

unitActual (S,I,Exp) Indicates that the call site at S passes Exp as parameter
I; Exp can be either an immediate value or a local.

unitMaySelect (S,M) Represents an edge in the call-graph

ushrExpr (L,Exp) Represents a bitwise unsigned right shift of L by Exp, which
may be a local or an integer constant.

value_unit(L,S) Used in ¢-expressions; indicates that L is the appropriate
value if control has transfered from S.

virtualInvokeExpr (M, [P|Ps]) Describes a method invocation of M using
virtual dispatch.

xorExpr(L1,L2) Represents bitwise exclusive-OoRr with operands L1 and L2.

DISCARD THIS PAGE

COLOPHON

This document is set in Adobe Warnock Pro 12 point; the sans-serif face is
Adobe Cronos Pro, and the mathematical and symbol font is AMS Euler. It was
set by the author on a Macintosh using pdfTeX with the microtype package,
the memoir class, a locally-modified version of the bringhurst chapter style,
and the natbib bibliography package. Prof. John Owens’ otfinst utility was
essential for converting OpenType fonts for use with LaTeX. All figures were
created in OmniGraffle, Adobe Illustrator cs3, and R.

135

REFERENCES

Abelson, H., R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams Iv, D. P.
Friedman, E. Kohlbecker, G. L. Steele, Jr., D. H. Bartley, R. Halstead, D. Oxley,
G. J. Sussman, G. Brooks, C. Hanson, K. M. Pitman, and M. Wand. 1998.
Revised® report on the algorithmic language scheme. Higher Order Symbolic
Computation 11(1):7—-105.

Aldrich, Jonathan, Valentin Kostadinov, and Craig Chambers. 2002. Alias
annotations for program understanding. In oorsLa ‘02: Proceedings of the
17th aAcm sIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 311—330. New York, NY, USA:ACM Press.

Alpern, B., S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng,
J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss,
T. Ngo, V. Sarkar, and M. Trapp. 2005. The Jikes Research Virtual Machine
project: Building an open-source research community. 18m Systems Journal

44(2):399—417.

Alpern, Bowen, C. Richard Attanasio, John J. Barton, Anthony Cocchi, Su-
san Flynn Hummel, Derek Lieber, Ton Ngo, Mark F. Mergen, Janice C. Shep-
herd, and Stephen Smith. 1999. Implementing jalapeno in Java. In oorsLa
'99, 314—324.

Ammons, Glenn, Thomas Ball, and James R. Larus. 1997. Exploiting hardware
performance counters with flow and context sensitive profiling. In PLDI ’97:
Proceedings of the Acm SIGPLAN 1997 Conference on Programming Language
Design and Implementation, 85—-96. New York, NY, USA:ACM Press.

Andersen, Lars Ole. 1994. Program analysis and specialization for the C
programming language. Ph.D. thesis, Diku, University of Copenhagen.

Andrews, Jeff, and Nick Baker. 2006. Xbox 360 system architecture. IEEE
Micro 26(2):25—37.

Austin, Todd M., and Gurindar S. Sohi. 1992. Dynamic dependency analysis of
ordinary programs. In 1sca ‘92: Proceedings of the 19th Annual International
Symposium on Computer Architecture, 342—351. New York, NY, USA:ACM
Press.

137

138

Baker, Henry G., and Carl Hewitt. 1977. The incremental garbage collection
of processes. In Proceedings of the 1977 Symposium on Artificial Intelligence
and Programming Languages, vol. 12.

Ball, Thomas, and James R. Larus. 1992. Optimally profiling and tracing
programs. In acm Transactions on Programming Languages and Systems,
59-70.

———.1996. Efficient path profiling. In In Proceedings of the 29th Annual
International Symposium on Microarchitecture, 46—57.

Barnett, Michael, and David A. Naumann. 2004. Friends need a bit more:
Maintaining invariants over shared state. In mpPc, ed. Dexter Kozen and
Carron Shankland, vol. 3125 of Lecture Notes in Computer Science, 54—84.
Springer.

Barnett, Mike, Manuel Fandrich, Diego Garbervetsky, and Francesco Logozzo.
2007. Annotations for (more) precise points-to analysis. In 1waco 2007:
EcoopP International Workshop on Aliasing, Confinement and Ownership in
Object-Oriented Programming.

Barnett, Mike, David A. Naumann, Wolfram Schulte, and Qi Sun. 2004. 99.44%
pure: Useful abstractions in specifications. In In Ecoor Workshop on Formal
Techniques for Java-like Programs, 11—19.

Benton, William C., and Charles N. Fischer. 2007. Interactive, scalable, declar-
ative program analysis: from prototype to implementation. In prPDP ‘07:
Proceedings of the 9th AcMm SIGPLAN International Conference on Principles
and Practice of Declarative Programming, 13—24. New York, NY, USA:ACM
Press.

———.2009. Mostly-functional behavior in java programs. In vmcar ‘og: Pro-
ceedings of the Tenth International Conference on Verification, Model Check-
ing, and Abstract Interpretation. Springer-Verlag.

Berndl, Marc, Ondfej Lhotdk, Feng Qian, Laurie Hendren, and Navindra
Umanee. 2003. Points-to analysis using BDDs. In Proceedings of the Acm
SIGPLAN 2003 Conference on Programming Language Design and Implemen-
tation, 103—114. ACM Press.

139

Besson, Frederic, Thomas Jensen, and Fausto Spoto. 2003. Modular class
analysis with Datalog. In 10th International Symposium on Static Analysis,
LNCS 2694. Springer-Verlag.

Bierman, Gavin M., and Matthew J. Parkinson. 2003. Effects and effect in-
ference for a core Java calculus. In Electronic Notes in Theoretical Computer
Science, ed. Viviana Bono and Michele Bugliesi, vol. 82. Elsevier.

Bierman, G.M., M.J. Parkinson, and A.M. Pitts. 2003. MJ: An imperative core
calculus for Java and Java with... Tech. Rep., University of Cambridge.

Blackburn, S. M., R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The DaCapo
benchmarks: Java benchmarking development and analysis. In oorsLa '06:
Proceedings of the 21st annual Acm sIGPLAN Conference on Object-Oriented
Programing, Systems, Languages, and Applications. New York, NY, UsA:ACM
Press.

Bollig, Beate, and Ingo Wegener. 1996. Improving the variable ordering of
OBDDs is NP-complete. IEEE Transactions on Computers 45(9):993—1002.

Boyapati, Chandrasekhar, Robert Lee, and Martin C. Rinard. 2002. Ownership
types for safe programming: preventing data races and deadlocks. In oorsLa
‘02: Proceedings of the 17th Acm sIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, 211—230. New York, N,
USA:ACM Press.

Boyapati, Chandrasekhar, and Martin C. Rinard. 2001. A parameterized
type system for race-free Java programs. In oorsLa ‘o1: Proceedings of the
16th Acm s1IGPLAN Conference on Object oriented programming, systems, lan-
guages, and applications, 56—69. New York, NY, usa:AcM Press.

Boyapati, Chandrasekhar, Alexandru Salcianu, Jr. William Beebee, and Mar-
tin C. Rinard. 2003. Ownership types for safe region-based memory man-
agement in real-time Java. In PLDI '03: Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation, 324—337.
New York, NY, usa:AcM Press.

140

Bryant, Randal E. 1992. Symbolic boolean manipulation with ordered binary-
decision diagrams. Acm Computing Surveys 24(3):293—318.

Caromel, Denis. 1993. Toward a method of object-oriented concurrent pro-
gramming. Communications of the ACM 36(9):90—102.

Chaudhuri, Swarat. 2008. Subcubic algorithms for recursive state machines.
In PopL 08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 159—169. New York, NY, USA:ACM
Press.

Chen, Michael, and Kunle Olukotun. 1998. Exploiting method-level paral-
lelism in single-threaded Java programs. In Proceedings of PACT '98.

———.2003. The jrpm system for dynamically parallelizing Java programs. In
Proceedings of the 3oth International Symposium on Computer Architecture
(1sca-30). San Diego, California.

Chen, Weidong, and David S. Warren. 1996. Tabled evaluation with delaying
for general logic programs. Journal of the Acm 43(1):20—-74.

Cherem, Sigmund, and Radu Rugina. 2004. Region analysis and transforma-
tion for Java programs. In Proceedings of the 2004 International Symposium
on Memory Management . Vancouver, Canada.

———.2006. Compile-time deallocation of individual objects. In Proceed-
ings of the 2006 International Symposium on Memory Management . Ottawa,
Canada.

———.2007. A practical escape and effect analysis for building lightweight
method summaries. In 16th International Conference on Compiler Construc-
tion (cc 2007) . Braga, Portugal.

Chin, Wei-Ngan, Florin Craciun, Shengchao Qin, and Martin C. Rinard. 2004.
Region inference for an object-oriented language. In PLDI ‘04: Proceedings
of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, 243—254. New York, NY, usa:AcM Press.

Choi, J.-D., M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. 1999. Es-
cape analysis for Java. In 1999 aAcm siGrLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (00PSLA99). Denver, co.

141

Choi, J.-D., K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridha-
ran. 2002. Efficient and precise datarace detection for multithreaded object-
oriented programs. In In Proceedings of the 2002 AcMm sIGPLAN Conference
on Programming Language Design and Implementation.

Codish, Michael, Bart Demoen, and Konstantinos Sagonas. 1998. Semantics-
based program analysis for logic-based languages using xsB. Springer Inter-
national Journal of Software Tools for Technology Transfer 2(1):29—45.

Corbett, James C. 1994. An empirical evaluation of three methods for deadlock
analysis of ada tasking programs. In 1SSTA ’94: Proceedings of the 1994 ACM
SIGSOFT International symposium on Software testing and analysis, 204—215.
New York, NY, usa:acM Press.

Costa, Vitor Santos. 2007. Prolog performance on larger datasets. In Proceed-
ings of the oth International Symposium on Practical Aspects of Declarative
Languages, 185—199.

Costa, Vitor Santos, Luis Damas, Rogerio Reis, and Ruben Azevedo. 2000.
YAP user’s manual. Universidade do Porto.

Costa, Vitor Santos, Konstantinos F. Sagonas, and Ricardo Lopes. 2007.
Demand-driven indexing of prolog clauses. In Proceedings of the 23rd Inter-
national Conference Logic Programming, 395—409.

Dahl, Ole-Johan, Bjern Myhrhaug, and Kristen Nygaard. 1970. siMuLA infor-
mation: Common base language. S-22, Oslo:Norwegian Computing Center.

Dawson, Steven, C. R. Ramakrishnan, and David S. Warren. 1996. Practi-
cal program analysis using general purpose logic programming systems—a
case study. In In Proceedings of the Acm SIGPLAN Conference on Program-
ming Language Design and Implementation, vol. 31, 117—-126. New York, Ny,
USA:ACM Press.

Diwan, Amer, Kathryn S. McKinley, and J. Eliot B. Moss. 2001. Using types
to analyze and optimize object-oriented programs. Programming Languages
and Systems 23(1):30—72.

Dolby, Julian. 1997. Automatic inline allocation of objects. In pPLDI ‘97:
Proceedings of the AcM SIGPLAN 1997 Conference on Programming Language
Design and Implementation, 7—17. New York, NY, USA:ACM Press.

142

Dolby, Julian, and Andrew Chien. 2000. An automatic object inlining opti-
mization and its evaluation. In PLDI "00: Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation, 345—357.
New York, NY, UsA:AcM Press.

Dolby, Julian, and Andrew A. Chien. 1998. An evaluation of automatic object
inline allocation techniques. In ooprsLA '98: Proceedings of the 13th Acm
siGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, 1—20. New York, NY, USA:ACM Press.

Engblom, Jakob, Guillaume Girard, and Bengt Werner. 2006. Testing em-
bedded software using simulated hardware. In Proceedings of ERTS 2006:
Embedded Real-Time Software.

Esparza, Javier, and Andreas Podelski. 2000. Efficient algorithms for pre*
and post* on interprocedural parallel flow graphs. In PoPL ‘00: Proceedings
of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1—11. New York, NY, USA:ACM Press.

Fdahndrich, Manuel, and Alexander Aiken. 1997. Program analysis using
mixed term and set constraints. In Static Analysis Symposium, 114—126.

Flanagan, Cormac, and Shaz Qadeer. 2003. A type and effect system for
atomicity. In PLDI '03: Proceedings of the AcM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, 338—349. New York, Ny,
USA:ACM Press.

Friedman, Daniel P,, and David S. Wise. In Proceedings of the 1976 Interna-
tional Conference on Parallel Processing, ed. Philip H. Enslow. Detroit, mI.

Ghemawat, Sanjay, Keith H. Randall, and Daniel]. Scales. 2000. Field analysis:
getting useful and low-cost interprocedural information. In AcMm sIGPLAN ‘00
Conference on Programming Language Design and Implementation (PLDI).,

vol. 35, 334—344.

Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha. 2000. The Java language
specification second edition. Boston, Mass.:Addison-Wesley.

Graham, Susan L., Peter B. Kessler, and Marshall K. Mckusick. 1982. Gprof:
A call graph execution profiler. siGPLAN Not. 17(6):120—126.

143

Greenhouse, Aaron, and John Boyland. 1999. An object-oriented effects
system. In ECOOP '99: Proceedings of the 13th European Conference on Object-
Oriented Programming, 205—229. London, uk:Springer-Verlag.

Grossman, Dan, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang,
and James Cheney. 2002. Region-based memory management in cyclone. In
PLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, 282—293. New York, NY, USA:ACM
Press.

Hall, Robert J. 1992. Call path profiling. In 1CcSE ’92: Proceedings of the 14th
International Conference on Software engineering, 296—306. New York, Ny,
USA:ACM Press.

Hall, Robert J., and Aaron J. Goldberg. 1993. Call path profiling of monotonic
program resources in UNIX. In Usenix-stc’93: Proceedings of the USENIX Sum-
mer 1993 Technical Conference, 1—19. Berkeley, cA, UsA:USENIX Association.

Halstead, Robert H. 1985. MULTILISP: a language for concurrent symbolic
computation. Acm Transactions on Programming Languages and Systems
(ToPLAS) 7(4):501—538.

Hanbing Liu, and] Strother Moore. In Proceedings of 17th International
TPHOLS 2004, ed. Konrad Slind, Annette Bunker, and Ganesh Gopalakrishnan,
184—200.

Heintze, Nevin. 1992. Set-based program analysis. Ph.D. thesis, Pittsburgh,
PA, USA.

Heintze, Nevin, and Joxan Jaffar. 1994. Set constraints and set-based analysis.
In Principles and Practice of Constraint Programming, 281—298.

Heintze, Nevin, and Olivier Tardieu. 2001. Ultra-fast aliasing analysis using
cLA: a million lines of ¢ code in a second. In PLDI '01: Proceedings of the Acm
SIGPLAN 2001 Conference on Programming Language Design and Implemen-
tation, 254—263. New York, NY, usa:AcM Press.

Hendren, Laurie J., C. Donawa, Maryam Emami, Guang R. Gao, Justiani,
and B. Sridharan. 1993. Designing the McCAT compiler based on a family
of structured intermediate representations. In Proceedings of the 5th In-
ternational Workshop on Languages and Compilers for Parallel Computing,
406—420. London, uk:Springer-Verlag.

144

Henglein, Fritz, Henning Makholm, and Henning Niss. 2005. Effect type
systems and region-based memory management. In Advanced Topics In
Types And Programming Languages, ed. Benjamin C. Pierce, chap. 3, 87—-133.
The mIT Press.

Hind, Michael. 2001. Pointer analysis: Haven’t we solved this problem yet?
In 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE 01). Snowbird, UT.

Hind, Michael, and Anthony Pioli. 2000. Which pointer analysis should i use?
In International Symposium on Software Testing and Analysis, 113—123.

Hoare, C. Anthony R. 1974. Monitors: An operating system structuring
concept. Communications of the ACM 17(10):549—557.

Hollingsworth, Jeftrey K., Barton P. Miller, and Jon Cargille. 1994. Dynamic
program instrumentation for scalable performance tools. In Scalable High-
Performance Computing Conference, 841—850.

Igarashi, Atshushi, Benjamin C. Pierce, and Philip Wadler. 1999. Feather-
weight Java: a minimal core calculus for Java and GJ. In 0oPsLA ’99: Proceed-
ings of the 14th Acm SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 132—146. New York, NY, USA:ACM
Press.

Kennan, Kent Wheeler. 1987. Counterpoint: Based on eighteenth-century
practice. 3rd ed. Prentice Hall.

Knight, Tom. 1986. An architecture for mostly functional languages. In LFpP
'86: Proceedings of the 1986 Acm Conference on LISP and functional program-
ming, 105—112. New York, NY, USA:ACM Press.

Kodumal, John, and Alex Aiken. 2004. The set constraint/CFL reachability
connection in practice. In PLDI ‘04: Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation, 207—218.
New York, NY, USA:ACM Press.

Kodumal, John, and Alexander Aiken. 2005. Banshee: A scalable constraint-
based analysis toolkit. In Proceedings of 12th International Static Analysis
Symposium, 218—234.

145

Lagoon, Vitaly, and Peter J. Stuckey. 2002. Precise pair-sharing analysis of
logic programs. In PPDP ‘02: Proceedings of the 4th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, 99—108.
New York, NY, usa:acM Press.

Lam, Monica S., John Whaley, V. Benjamin Livshits, Michael C. Martin,
Dzintars Avots, Michael Carbin, and Christopher Unkel. 2005. Context-
sensitive program analysis as database queries. In Proceedings of the Twenty-
Sfourth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems. ACM Press.

Laud, Peeter. 2001. Analysis for object inlining in Java. In In Proceedings of
the joses Workshop, 1-8.

Lea, Doug. 2004. Concurrency utilities. Tech. Rep. JSR166, Sun Microsystems.

Leavens, Gary T., Albert L. Baker, and Clyde Ruby. 1998. Preliminary design of
JML: a behavioral interface specification language for Java. Tech. Rep. TR98-06,
Department of Computer Science, lowa State University, Ames, Iowa.

———.2006. Preliminary design of jML: a behavioral interface specification
language for Java. sIGSOFT Software Engineering Notes 31(3):1—38.

Leroy, Xavier. 2006. Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant. In PorL ‘06: Conference record
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 42—54. New York, NY, USA:ACM Press.

Lhotdk, Ondrej, and Laurie Hendren. 2002. Run-time evaluation of oppor-
tunities for object inlining in Java. In jGI ‘02: Proceedings of the 2002 joint
AcMm-1scopPe Conference on Java Grande, 175—184. New York, NY, USA:ACM
Press.

Lhotdk, Ondrej, and Laurie Hendren. 2004. Jedd: A BDD-based relational
extension of Java. In Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation. ACM Press.

Lindholm, Tim, and Frank Yellin. 1999. Java virtual machine specification.
Addison-Wesley Longman Publishing Co., Inc.

Liu, Yanhong A. 2000. Efficiency by incrementalization: An introduction.
Higher Order Symbolic Computation 13(4):289—313.

146

Liu, Yanhong A., and Scott D. Stoller. 2003. From datalog rules to efficient pro-
grams with time and space guarantees. In PPDP '03: Proceedings of the 5th Acm
SIGPLAN International Conference on Principles and Practice of Declarative
Programming, 172—183. New York, NY, UsAa:ACM Press.

Liu, Yanhong A., Scott D. Stoller, and Tim Teitelbaum. 1998. Static caching
for incremental computation. Acm Transactions on Programming Languages
and Systems 20(3):546—585.

Lucas, Jr., Henry. 1971. Performance evaluation and monitoring. Acm Com-
puting Surveys 3(3):79—91.

Lucassen,]J. M., and D. K. Gifford. 1988. Polymorphic effect systems. In
Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 47—57. ACM Press.

Luk, Chi-Keung, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay J. Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation.
In PLDI '05: Proceedings of the 2005 Acm sIGPLAN Conference on Program-
ming Language Design and Implementation, vol. 40, 190—200. New York, Ny,
USA:ACM Press.

Ma, Kin-Keung, and Jeffrey S. Foster. 2007. Inferring aliasing and encapsula-
tion properties for java. In oorsLA ‘o7: Proceedings of the 22nd annual Acm
sIGPLAN Conference on Object oriented programming systems and applica-
tions, 423—440. New York, NY, UsA:AcM Press.

Makinson, David Clement. 1965. The paradox of the preface. Analysis 25(6):
205—207.

Marriott, Kim, and Harald Sendergaard. 1993. Precise and efficient ground-
ness analysis for logic programs. Acm Letters on Programming Languages
and Systems 2(1-4):181—196.

Melski, David, and Thomas Reps. 1997. Interconvertbility of set constraints
and context-free language reachability. In PEPM "97: Proceedings of the 1997
ACM SIGPLAN symposium on Partial evaluation and semantics-based pro-
gram manipulation, 74—89. New York, NY, USA:ACM Press.

147

Meyer, Bertrand. 1988. Object Oriented Software Construction. Computer
Science, Prentice Hall.

———.1993. Systematic concurrent object-oriented programming. Com-
munications of the ACM 36:56—8o0.

Milanova, Ana, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized
object sensitivity for points-to analysis for Java. Acm Transactions on Software
Engineering Methodology 14(1):1—41.

Miller, Barton P., Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,
and Tia Newhall. 1995. The Paradyn parallel performance measurement tool.
1EEE Computer 28(11):37—46.

Moreau, Luc. 1996. The semantics of scheme with future. In International
Conference on Functional Programming, 146—156.

Mousa, Hussam, Chandra Krintz, Lamia Youseff, and Richard Wolski. 2007.
Viprof: Vertically integrated full-system performance profiler. In Proceed-
ings of the 21th International Parallel and Distributed Processing Symposium
(1PDPS 2007), 26-30 march 2007, long beach, california, usa, 1—6. 1EEE.

Naik, Mayur, and Alex Aiken. 2007. Conditional must not aliasing for static
race detection. In PoPL ‘07: Proceedings of the 34th annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 327—338. New
York, NY, usa:AcM Press.

Naik, Mayur, Alex Aiken, and John Whaley. 2006. Effective static race detec-
tion for Java. In PLDI '06: Proceedings of the 2006 Acm siGPLAN Conference
on Programming Language Design and Implementation, 308—319. New York,
NY, USA:ACM Press.

Nayfeh, Basem A., Lance Hammond, and Kunle Olukotun. 1996. Evaluation
of design alternatives for a multiprocessor microprocessor. In 23rd Annual
International Symposium on Computer Architecture. Philadelphia, pA.

Nielson, Flemming, and Hanne Riis Nielson. 1999. Type and effect systems. In
Correct System Design, Recent Insight and Advances, (to Hans Langmaack on
the occasion of his retirement from his professorship at the University of Kiel),
114-136. London, uk:Springer-Verlag.

148

Olukotun, Kunle, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and
Kunyung Chang. 1996. The case for a single-chip multiprocessor. In AspLOs-
viI: Proceedings of the seventh International Conference on Architectural sup-
port for programming languages and operating systems, 2—11. New York, Ny,
USA:ACM Press.

Palsberg, Jens. 2001. Type-based analysis and applications. In 2001 acm
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering (PASTE ‘01), 20—27. Snowbird, UT.

Perlis, Alan J. 1982. Epigrams on programming. siGpLAN Notices 17(9):7—13.

Permandla, Pratibha, Michael Roberson, and Chandrasekhar Boyapati. 2007.
A type system for preventing data races and deadlocks in the java virtual
machine language: 1. s1GpLAN Not. 42(7):10.

Porat, Sara, Marina Biberstein, Larry Koved, and Bilha Mendelson. 2000.
Automatic detection of immutable fields in Java. In cAScon ‘oo: Proceedings
of the 2000 Conference of the Centre for Advanced Studies on Collaborative
research, 10. 1BM Press.

Pratikakis, Polyvios, Jeffrey S. Foster, and Michael Hicks. 2006. Existential
label flow inference via CFL reachability. In Proceedings of the Static Analysis
Symposium (SAS).

Pratikakis, Polyvios, Jaime Spacco, and Michael Hicks. 2004. Transparent
proxies for Java futures. In Proceedings of the Acm Conference on Object-
Oriented Programming Languages and Systems (OOPSLA).

Quinonez, Jaime, Matthew S. Tschantz, and Michael D. Ernst. 2008. Inference
of reference immutability. In EcooP 2008 — Object-Oriented Programming,
22nd European Conference, 616—641. Paphos, Cyprus.

Reps, Thomas. 1998. Program analysis via graph reachability. Information
and Software Technology 40(11—12):701—726.

Reps, Thomas, Stefan Schwoon, Somesh Jha, and David Melski. 2005.
Weighted pushdown systems and their application to interprocedural dataflow
analysis. Science of Computer Programming 58(1-2):206—263.

149

Reps, Thomas W. 1994. Solving demand versions of interprocedural analy-
sis problems. In cc ’94: Proceedings of the 5th International Conference on
Compiler Construction, 389—403. London, Uk:Springer-Verlag.

Rocha, Ricardo, Fernando Silva, and Vitor Santos Costa. 2005. On Applying
Or-Parallelism and Tabling to Logic Programs. Theory and Practice of Logic
Programming Systems 5(1-2):161—205.

Rountev, Atanas, Ana Milanova, and Barbara G. Ryder. 2001. Points-to
analysis for Java using annotated constraints. In 0ooprsLa ‘o1: Proceedings of
the 16th Acm sIGPLAN Conference on Object oriented programming, systems,
languages, and applications, 43—55. New York, NY, USA:ACM Press.

Saha, Diptikalyan, and C. R. Ramakrishnan. 2005. Incremental and demand-
driven points-to analysis using logic programming. In Principles and Practice
of Declarative Programming. Lisbon, Portugal:Acm Press.

Salcianu, Alexandru, and Martin C. Rinard. Tech. Rep.

Skalka, Christian. 2005. Trace effects and object orientation. In Proceedings of
the acm Conference on Principles and Practice of Declarative Programming.

Skalka, Christian, Scott Smith, and David Van Horn. 2005. A type and ef-
fect system for flexible abstract interpretation of Java. In Proceedings of the
Acm Workshop on Abstract Interpretation of Object Oriented Languages. Elec-
tronic Notes in Theoretical Computer Science.

Smith, James E., and Gurindar S. Sohi. 1995. The microarchitecture of super-
scalar processors. Proceedings of the IEEE 83(12):1609—1624.

Sridharan, Manu, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005.
Demand-driven points-to analysis for Java. In oorsLA ‘o05: Proceedings of
the 20th annual Acm SIGPLAN Conference on Object Oriented Programming
Systems, Languages, and Applications, 59—76. New York, NY, USA:ACM Press.

Steensgaard, Bjarne. 1996. Points-to analysis in almost linear time. In PoPL
'96: Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 32—41. New York, NY, UsA:AcM Press.

Sélcianu, Alexandru, and Martin C. Rinard. 2005. Purity and side effect
analysis for Java programs. In vamcai, ed. Radhia Cousot, vol. 3385 of Lecture
Notes in Computer Science, 199—215. Springer.

150

Sundaresan, Vijay, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Pat rick Lam, Etienne Gagnon, and Charles Godin. 2000. Practical virtual
method call resolution for Java. Acm SIGPLAN Notices 35(10):264—280.

Talpin, Jean-Pierre, and Pierre Jouvelot. 1992. Polymorphic type, region and
effect inference. Journal of Functional Programming 2:245-271.

Tofte, Mads, and Jean-Pierre Talpin. 1997. Region-based memory manage-
ment. Information and Computation.

Tomb, Aaron, and Cormac Flanagan. 2005. Automatic type inference via
partial evaluation. In PPDP ‘05: Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Principles and Practice of Declarative Programming,
106—116. New York, NY, USA:ACM Press.

Tschantz, Matthew S., and Michael D. Ernst. 2005. Javari: Adding reference
immutability to Java. In Object-Oriented Programming Systems, Languages,
and Applications (0OPSLA 2005), 211—230. San Diego, CA, USA.

Tullsen, Dean M., Susan]. Eggers, and Henry M. Levy. 1995. Simultane-
ous multithreading: Maximizing on-chip parallelism. In Proceedings of
the 22nd Annual International Symposium on Computer Architecture. Santa
Margherita Ligure, Italy.

Unkel, Christopher, and Monica S. Lam. 2008. Automatic inference of sta-
tionary fields: a generalization of java’s final fields. In porL, ed. George C.
Necula and Philip Wadler, 183—195. AcM Press.

Vallée-Rai, Raja, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam,
and Vijay Sundaresan. 1999. Soot - a Java bytecode optimization framework.
In Proceedings of the 1999 Conference of the Centre for Advanced Studies on
Collaborative research, 13. 1BM Press.

Van Roy, Peter. 2008. The challenges and opportunities of multiple processors:
Why multi-core processors are easy and internet is hard. In International
Computer Music Conference.

Vivien, Frédéric, and Martin C. Rinard. 2001. Incrementalized pointer and
escape analysis. In siGrLAN Conference on Programming Language Design
and Implementation, 35—46.

151

Warg, F., and P. Stenstrom. 2001. Limits on speculative module-level paral-
lelism in imperative and object-oriented programs on cMp platforms. In Inter-
national Conference on Parallel Architectures and Compilation Techniques
(PACT '01). IEEE.

Welc, Adam, Suresh Jagannathan, and Antony Hosking. 2005. Safe futures for
Java. In oopsLA ‘o5: Proceedings of the 20th annual Acm SIGPLAN Conference
on Object oriented programming, systems, languages, and applications, 439—
453. New York, NY, USA:ACM Press.

West, D. H. D. 1979. Updating mean and variance estimates: an improved
method. Communications of the Acm 22(9):532—535.

Whaley, John, and Monica S. Lam. 2004. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In Proceedings of
the Conference on Programming Language Design and Implementation. ACM
Press.

van Wijngarden, Adriaan, Cornelis H. A. Koster B.]. Mailloux, J. E. L. Peck,
Michel Sintzoff, C. H. Lindsey, Lambert G. L. T. Meertens, and R. G. Fisker.
1975. Revised report on the algorithmic language ALGOL 68. Acta Informatica
5:1—236.

Zhao, Qin, Rodric M. Rabbah, Saman P. Amarasinghe, Larry Rudolph, and
Weng-Fai Wong. 2008. How to do a million watchpoints: Efficient debugging
using dynamic instrumentation. In cc, ed. Laurie J. Hendren, vol. 4959 of
Lecture Notes in Computer Science, 147—162. Springer.

Zibin, Yoav, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kiezun, and
Michael D. Ernst. 2007. Object and reference immutability using Java gener-
ics. In ESEC/FSE 2007: Proceedings of the 11th European Software Engineering
Conference and the 15th ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, 75—84. Dubrovnik, Croatia.

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Our contributions
	Synopsis

	Exposing latent object-level parallelism
	Preliminaries
	Purity and safety
	The pima model
	Related work

	Declaring bytecode processors and analyses
	Overview of the system
	Using dimple+
	The dimple+ ir
	The dimple+ Analysis Language
	Query engines
	Case study: Andersen's analysis
	Case study: effects inference
	Related work

	Effect inference for safe parallel execution
	Mostly-functional behavior in Java programs
	Objects and effects: Background and motivation
	A lightweight object-oriented effects system
	Initializers and initialization effects
	Quiescing field inference
	Degrees of purity
	Related work

	Runtime evaluation and support
	Experimental environment & evaluation methodology
	Method invocations as potential tasks
	Runtime support
	Related work

	Conclusions and future work
	Conventions
	Naming conventions
	Typographical conventions

	Relations in the DIMPLE IR
	Colophon
	References

